Gr i dP A OveRiew

This document is desigd to provide ain-depth descriptionft he Gr i dPACKE f r ame\
and the software modules contained within it. In combination with the Doxygssd

documentation on the GridPACK webpage, users and applicatiolodekeshould have a

complete description of the framework components and how to use them. The applications area

in the source code directory, as well as the GridPACK modules and components, provide

additional examplkeof how GridPACK can be used to creat@ver grid applications. However,

if there are still questions on GridPACK, users should feel free to contact the GridPACK

development team.



Gr i d PACKE Cbpyrghe (c)s2@8, Battelle Memorial Institute All rights reserved.

1. Battelle Memorial In#tute (hereinafter Battelle) herelgyants permission to any person or
entity lawfully obtaining a copwf this software and associategcdmentation files (hereinafter
"the Software") to redistributend use the Software in sourned binary forms, witlor withou
modification. Such person entity may use, copy, mdgli merge, publish, distribute,
sublicenseand/or sell copies of the Softwar@damay permit others to do sybject to the
following conditions:

* Redistributions of source code mustan the above copyrightotice, this list of conditions
and the following disclaimers.

* Redistributions in binary form museproduce the above copyrigittice, this list of
conditionsand the following disclaimer ithe documentation and/orhatr materials provided
with thedistribution.

* Other than as used herein, their the name Battelle Memorilastitute or Battelle may be
usedin any form whatsoever withothe express written consent of Rdii.

2. THIS SOFTWARE IS PROVIDEBY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANYEXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL BATTELLE OR CONTRIBUTORS BH.IABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (NCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS ORERVICES; LOSS OF USE, DATA, ORROFITS; OR
BUSINESS INTERRUPTON) HOWEVER CAUSED AND ON ANYTHEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVBED OF THE POSSIBILITY OF SUCBAMAGE.

3. The Software was produdey Battelle under Qatract No.DE-AC05-76RL01830 with the
Departmenbf Energy. For five (5) yeafsom October 10, 2013, the Gowenent is granted for
itself andothers acting on its behalf a nonexclusive, pgdirrevocableworldwide license in
this data to repmtuce, pepare derivative worksnd perform publicly and displayplicly, by or
on behalf of th&Government. There is provision for thessible extension of the tewhthis
license. Subsequent to tha&ripd or any extension grantdabde Government is grantdaor itself
and others acting on its behalhanexclusive, paidip, irrevocable wddwide license in this data
to reproduce, prepare derivative workstdbute copies to the publiperform publicly and
display publity, and to permit others to dso. The specific term of the licenserche identified
by inquiry madeo Battelle or DOE. Neither the Uad States nor the United Sta@spartment
of Energy, nor any of their employeesakes any warrantgxpress or implied, or assumes any
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legalliability or responsibility fothe accuracy, completeness or usefulléssy data,
apparatus, producr process disclosed, or represeéhtt its use would not infringerivately
owned rights.
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How to read this document

Dependingonhowyouapel anni ng on usi ng Gietyof Bffe@M &aysof her e ar e
approaching the documentation. If you are only planning on using existing applications as is, without
modification, then you should focus on the sections for configuring and building GridPACK and the

application module documentati. Users that interested in developing their own applications may want

to scan the section fiDevel oping Applicationso bef
about individual functionality i n ddeifohahexampldse A Gr i
of simple applications that can be used to get a sense of how to build an application from the ground up.
The AContingency Analysiso section provides some
based on the existing GridPACK@lication modules. Users that are interested in modifying the core
functionality in Gri dPACK can | ook at the Doxygen
Document at weovmgidpackiomgi addition to the documentation in this document

Introduction

The objectiveo f t h e G rtoolkit Praj&ztis Fo providea framework to support the rapid
development of power grid applications capable of running on high performance computing
architectures (HPC) with high levels of performanid scalability. The toolkiallows power
system engineers to focus on developing working applications from their models without getting
bogged down in the details of decomposing the computation across multiple processors,
managing data transfers betweeogassors, working out index transformations between power
grid networks and the matrices generated by different power applications, aagimganput

and output. GridPACKs being designed to encapsulate as much of the-besping required to
set up HPGpplications as possibisinghigh-level programming abstractions that allow
developers to concentrate on the physics and mathematics of their problems.

This documensummarize theoverall design of the GridPACKameworkand provides a
detailed descriptn of its componentshe remainder athis document will describihe
functionalityincorporated into th&ridPACK frameworkto support multipt power grid
applications The framework will continue to evolve as more +wakld experience can be
incorporded into the design press but manpase classes that have already been identkitd
are capable of supporting a rangepplications.

During the initial stages of GridPACK developmewif power grid applicationseretargeted
for implementationThese included:

1) Powerflow simulations of the electric grid

2) Contingency analysis of the electric grid

3) State estimation based on electric grid measurements
4) Dynamic simulations of the electric grid

Fromthese applications, several crasgting functionalitiesvere identified that could be used
to support multiple applications.


http://www.gridpack.org/

1)

2)

3)

4)

Network topology and behavioFhe network topology is the starting point for any power
grid analysis. The topology defines the initial network model and is the connection point
betweenhe physical problem definition in terms of buses and branches and the solution
method, which is usually expressed in terms of matrices and vectors.

Network components and their properties (e.g. bus and branch models, measurements,
etc.) Grid components arthe objects associated with the buses and branches of the
power grid network. Along with the network topology itself, these define the physical
system being modeled and in some cases the analysis that is to be performed. Bus and
branch components can digferentiated into things like generators, loads, grounds, lines,
transformers, measurements, etc. and depending on the how they are defined and the
level of detail incorporated into them, they define different power grid systems and
analyses. The behaviof buses and branches can depend on the properties of branches or
buses that are directly attached to them, e.g. figuring out the contribution of a particular
bus to the solution procedure may require that properties aftdehedranches are

made avdable to the bus. The necessity for exchanging this data is built into the
framework. Furthermore, these data exchanges must also be accounted for in a parallel
computing context, since the grid component from which data is required may be located
on a diferent processor.

Linear algebra and solveBasic algebraic objects, such as distributed matrices and
vectors, are a core part of the solution akhons required by power grahalyses. Most
solution algorithms are dominated by sparse matrices but,&teh as Kalman filter
analyses, require dense matrices. Vectors are typically dense. There exists a rich set of
libraries for constructing distributed matrices and vectors and these are coupled to
preconditioneand solver libraries. GridPACEan leverge this work heavily by creating
wrapperdo these librariethatcan be used in solution algorithms. Wrapping these
libraries instead of using them directly will ha\®e tadvantage that creatiatgebraic

objects can be simplified somewhat for power gpglications but more importantly, it

will allow framework developers to investigate new solver and algebraic libraries
seamlessly, without disrupting other parts of the code.

Mapping between network and algebraic objects. The physical properties ofgyaver
systems are defined/metworks and the properties of the network components but the
equations describing the networks are algebraic in nature. The mappings between the
physical networks and the algebraic equations depend on the indexing schenoe used t
describe the network and the number of parameters in the network components that
appear in the equations. Constructing a map between network parameters and their
corresponding locations in a matrix or vector can be complicated and error prone.
Fortunatey, much of this work can be autoradtand developers can foausre on
developing code to evaluate individual matrix elements without worrying about where to
locate them intte matrix. This casimplify codingconsiderably



The elements described above éall beenincorporated int&ridPACK modules More details
about these modules and their interactions are provided in the remainder of this document.

Configuring and Building GridPACK
A note about CMake The command for invoking CMake in this manual amldocumentation
in https://gridpack.orgs usually of the form

cmake [OPTIONS] ..

This particular form assumes that the build directory is below the directory that contains the top
level CMakelLists.txt file for the build. For GridPACK, this is located in thee directory.

If your build directory for GridPACK is belowrc and you invoke CMake from this directory,

t h e odtthe end of themake commands pointing tosrc . You could also use the absolute
path tothesrc di r e ct or y. dandghisevauliivork io matter where you locattee

build directory.

Building GridPACK requires several external libraries that must be built prior trying to configure
and build GridPACK itself. On some systems, thesetigsanay already be available but in

many cases, users will need to build them by hAndexception is MPI, which is usually

available on parallel platforms, although users interested in running parallel jobs on-eoneulti
workstation maystill need tdbuild it themselvedn any case, the best way to guarantee that all
libraries are compatible with each other is to build them all using a consistent environment and
set of compilers. There is extensive documentation on how to build GridPACK anr#iedi

on which it dependsn the website located hattps://gridpack.orgWe refer to the information

on the website for most of the details on how to build GridPACK and willdisbuss some

general propertiesf the canfigure procedure in this document.

Example scripts for building the libraries used by GridPACK on different systems can be found
under$GRIDPACK/src/scripts . In most cases these need to be modified slightly before

they will work on your system, but theaiges are usually small and selident. The scripts

contain some additional documentation at the top to help you with these modifications. Find a
script for a platform that is similar to your system and use this as the starting point for your build.

GridPACK uses the CMake build system to create a set of make files that can then be used to
compile the entire GridPACK framework. Most of the effort in building GridPACK is focused

on getting the configure process to work, once configure has been successflgted,

compilation is usually straightforward. Builds of GridPACK should be done in their own

directory and this also makes it possible to have multiple builds that use different configuration
parameters associated with the same sourceTtypeally, the build directories are under
$GRIDPACK/src directory but they can be put anywhere the user chooses. The user then needs
to run CMakerom the build directoryo configure GridPACK and themake andmake

install to compile and install the GridPACK litaries. After runningnake, all applications
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in the GridPACK source tree are also available for Tike.application executables will be
located in the build directory and not in the source tree.

GridPACK currently makes use of five different libraries. IMRd Global Arrays are used for
communication, Boost provides several C++ extensions used throughout GridPACK, Parmetis is
used to partition networks over multiple processors and PETSc provides parallel solvers and
algebraic functionality. Except for MPihich is usually available through compiler wrappers

such asnpicc andmpicxx , the locatios of the remaining libraries ne¢d be specified in the
CMake configure command.

Because the cmake command takes a large number of arguments, it is usuallidaaytmgut
the entire command in a script. The script can then be edited as Ndedtedsure that the script
is executable by running tlelimod +x command on itA typical CMake configure script is

rm - rf CMake*

cmake - Wdev\
-D BOOST_ROOT:STRINGHOMEBoftware_new/boost 1 55 0' \
- D PETSC_DIR:STRING=$HOMBoftware_new/petsc  -3.6.0' \
- D PETSC_ARCH:STRINGs=ux - openmpi- gnu- cxx' \
-D PARMETIS_DIR:STRING=*
' $HOMBoftware_new/petsc - 3.6.0/linux - openmpi- gnu- cxx/lib’ \
-D GA_DIR:STRING=3HOMEoftware_new/ga -5-4-ib" \
-D USE_PROGRESS_RANKS:BOOL=FRALSE
-D GA_EXTRA_LIBS='Irt - libverbs' \
- D MPI_CXX_COMPILER:STRING="mpicxx\
-D MPI_C_COMPILER:STRING="mpicc'\
- D MPIEXEC:STRING="mpiexec' \
-D CMAKE_INSTALL_PREFIX:PATHGRIDPACK/src/build/install’ \
-D CMAKE_BUILD_TYPE:STRING='RELWITHDEBINFO'
- D MPIEXEC_MAX_NUMPROCS:STRING¥"2"
-D CMAKE_VERBOSE_MAKEFILE:STRING=TRUE

The first line removes any configurati@ites that may be left over from a previous configuration
attempt. Removing these files is generally a good idea since parameters from a previous
unsuccessful attempt may bleed over into the current configuration and either spoil the
configurationitself or lead to problems when you try¢ompile the codelThe Bost, PETSc,
Parmetis and GlobalrRay library locations are specified by tB&OST _ROQPETSC_DIR
PARMETIS_DIRandGA_DIRvariables. ThR&ETSC_ARCHariable specifies the particular
build within PETSc that you war@ridPACK to use. It is usually possible when configuring and



building PETSc to have it download and build Parmetis as well. This was done in the example
above and thus the Parmetis libraries are located within the PETSc sourcettecgiiactory
corresponding to the architecture specifie@ErSC_ARCH

The Gbbal Arrays library can be builtsing a number of different runtimes. The default runtime
uses MPI twesided communicatianVhile it is very easy tose, this runtimeloes noscale well
beyond a dozen or so processors. sgerested on running on large numbers of cores should
look at configuring Global Arrays with other runtimes. A high perforn@#gruntime that is
available on most platforms is called progress ranks.rtiniime has a peculiarity in that it
reserves one MPI process per SMP node to manage communication. Thus, if youartmjaést
of 20 MPI processes on 4 nodes with 5 processes running on each node only 4 MPI process per
node will actually be available tbe application for a total of 16. In order to notify GridPACK
that you are using this runtime, you need to set the parabh@EerPROGRESS RANKStrue.

In the example above, we are not using progress ranks so WBEePROGRESS RANKS
false.

TheGA_EX'RA_LIBS parameter can be used to include extra libraries in the link step that are
not picked up as part of the configuratjgmocessin this exampleGA is configured to run on an
Infiniband network so it is necessary to explicitigludelibibverbs ard librt . For most

of the MPlbased runtimes, this variable is not needed.

The MPI wrappers for the C and C++ compilers can be specified by 9d®hgC  COMPILER
andMPI_CXX_COMPILERand the MPI launch command can be specified UgiREEXEC
TheCMAKE_INSRLL_PREFIX specifies the location of the installed build of GridPACK.

This location should be used when linking external applications to GridPACK. The
CMAKE_BUILD_TYPEan be used to control the level of debugging symbols in the library.
MPIEXEC_NUM_PROGSHould be set to a small number and controls the number of processors
that will be used if running the parallel tests in the GridPACK test suite. Many of the application
tests are small (9 or 14 buses) and will fail if you try and run on a large nuntmeesf Finally,
CMAKE_VERBOSE_MAKEFIIdentrols the level of information generated during the
compilation. It ismainly of interest for people doing development in Grid®A&hd most other
users can salfgset it to false.

The final argument of the cmakersmand is the location of the top lev@MakeLists.txt

file in the source tree. For GridPACK, this file is locateth@$GRIDPACK/src directory.
The above example assumes that the build directory is located directh$@GREIPACK/src
so the.. at the ed of the confyure script is pointing to théirectorycontaining the
CMakelLists.txt file.
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Once the GridPACK framework has been built, applications and framework tests can be run
using standard MPI scripts for running jobs. A typical invocation to rurdacmie.x on some
number of processors is

mpirun -n 2 code.x

In this case the code will run on 2 processors. Different platforms may use different scripts to run
the parallel jobConsult your local system documentation for det&ifsplications may alsodve
additional arguments that are processed inside the application itself. Most GridPACK
applications will take an argument representing the input file for the application.

Building GridPACK Applications

GridPACK comes with several applications that arduded in the main distribution. These
currently include power flow, contingeneyalysis, dynamic simulatiostate estimatioand
Kalman filterapplicationsas well as some ngomower grid examples that illustrate features of the
framework. Thesapplicatons are automaticallydilt whenever the full GridPACKlistribution

is built.

For applicationsleveloped outside the GridPACKHKstribution, the build process is fairly simple
providedyou are using CMake (you will need to have CMake instalfegour sytem to build
GridPACK so using CMake for your application build should be a straightforward extension).
For a CMake buildyou need to create a CMakelLists.txt file in the same directory that includes
your application files. A template for the CMakeListsftle is

cmake_minimum_required(VERSION 2.6.4)

if (NOT GRIDPACK_DIR)
set(GRIDPACK_DIR /[HOMKridpack -install
CACHE PATH "GridPACK installation directory")
endif()

include("${GRIDPACK_DIR}/lib/GridPACK.cmake")

O© 00O ~NO Ul WDN P

[
o

project ( MyProject )

B
N

enable_language(CXX)

Tl
MW

gridpack_setup()

Tl
o Ol

add_definitions(${GRIDPACK_DEFINITIONS})
include_directories(BEFORE ${CMAKE_CURRENT_SOURCE_DIR})
include_directories(BEFORE ${GRIDPACK_INCLUDE_DIRS})

el
co ~
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19

20 add_executable( myappx
21  myapp main.cpp

22  mayapp driver.cpp

23  myapp_filel .cpp

24  myapp_file2 .cpp

25 )

26 target_link_libraries( myappx ${GRIDPACK_LIBS})
27

28 add_custom_target( myappinput

29

30 COMMAND ${CMAKE_COMMAED)py

31 ${CMAKE_CURRENT_SOURCE_DIR}/inguntl

32 ${CMAKE_CURRENT_BINARY_DIR}

33

34 COMMAND ${CMAKE_COMMARD)py

35 ${CMAKE_CURRENT_SOURCE_Di{3pp_test .raw
36 ${CMAKE_CURRENT_BINARY_DIR}

37

38 DEPENDS

39 ${CMAKE_CURRENT_SOURCE_DIR}/input.xml
40 ${CMAK_CURRENT_SOURCE_DIR¥ppy test.raw
41 )

42 add_dependencies(myapp.x myapp .input)

Lines 16 check to see if the CMake installation is recent enough and also make sure that the
GRIDPACK DIRvari able has been defined in the confi
CMake will try and use a default value and look for a buildiRlOME/gridpack - install

However, this is unlikely to be successful, so it is better to A&FREOPACK _DIRwhen

configuring your application. Line 8 picks up a fileat is used by the application build ok to

libraries and header files in the GridPA®Kild and line 10 can be used to assign a name to

your application. Lines 28 can be included as is, if all application files are in the same

directory as the CMakelLists.txt file. If other directorgestain source and header files, then they

can be included using the directives in lines 17 and 18.

Lines 2025 define the name of the executable and all the source code files that are used in the
application.Theadd_executable = commandon line 26adds the excutablemyapp.x to the

build. The arguments to this command consist of the name of the executable followed by the
executable source files. There can be an arbitrary number of source files associated with any one
executable. Note that the source files pmtsist of the user application source files, the
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framework files are handled automaticalfysome of the files are located in subdirectories, then
the path relative to the directory where the CMakeLists.txt file is located should be included.

The remaning lines 2842 are optional andan be used to automatically copy files from the
application source file directory to the build directory. These could include example input files or
external configuration files that are called by the code to set infgaraieters. The
add_custom_target command on lin28 defines a list of files and what should be done

with them. In this example, the two filegout.xml  andmyapp_test.raw  are the files to

be copied. ThH€ OMMANIe specifies the action (copy) and thetsvo lines specify the

location of the file to be copied and its destinatibime DEPEND%eyword (line 38) indicates

that any time thénput.xml  ormyapp_test.raw files are modified, they should be

recopied to the build directory if make is invoked #imeladd_dependencies command

(line 42) binds the custom target to the build of the executable.

A template file forCMakeLists.txt can be found in therc directory under
CMakelLists.template.txt . Users should copy this file to their application directory,
modify the name t&€MakeLists.txt and add their own source files and test input.

GridPACK Framework Components

This section will describe th@éridPACK componentsand the functionality thegupport.The

four major GridPACK components are networks, bus aaddir components, the mappers and

the math module. The math module is relatively-sefitained and can be used as a conventional
library, but the other three are tightly coupled and need to be used together to do anything useful.
A schematic that illustras the relationship between these components is show in Figure 1.
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e Components

Mappers

Figure 1.Relationship beteen major GridPACKomponents.

A full description of a power grid network requires specification of both the netepdtogy

and thephysical properties of tHeus and branchoenponents. Theombination of thenodels
and thenetwork generatalgebraicequationghat can be solved to get desired system properties
GridPACK supplies numerous modules to simplify the process of specifying the model and
solving it. These includgowergrid components that describe the physics of the different
network models or analyses, grid component factories that initializeitheoggnponents,
mapperdhat convert the current state of the grid components into matrice®etads solvers
that supply the preconditioner and solver functionality necessary to implement solution
algorithms, input and output modules that allow developers to import aodt @ata and other
utility modules that support standard code develop operatkm$ning, evet logging, and
error handling.

Many of these modules acenstructed using libraries developed elsewhere so as to minimize
framework development time. Hower, by wrapping therm interfaces geared towards power
grid applications these libiias can be made easier to use by power grid engineers. The
interfaces B0 make it possible the futureto exchangdibrariesfor new or improved
implementations of specific functionality without requiring application developers to rewrite
their codesThis can significantly reduce the cost of introducing new technology into the
framework.Thesoftware layers in the GridPACKamework areshown schematically in Figure
2.
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Configure Module :

* PTIFormats s Exchanges . XML ¢ Serial IO
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Math and Solver Utilities
Task Manager Module Mapper *« FErrors
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Core Data Objects

Power Grid
Network

Matrices and
Vectors

Figure 2. A schematic diagram of the GridPACkamework software data stadBreen
represents components supplied by the fraonkwand blue represents code tisatieveloped by
the user.

Core framework components are described beRefore discussing the components
themselves, some of the coding conventiamg libraries used iGridPACK will be described.

Preliminaries: The GridPACKsoftware uses a few coding conventions to help improve memory
management and to minimize rtime errors. The first of these is to employ hamespaces for all
GridPACK modules. The entire GridPACIKamework uses thgridpack namespace,

individual modules within GridPACHkare further delimited by their own namespaées.

example, the BaseNetwork class discussed in the next section resides in the
gridpack::network namespace and other modules have simélneations. The example
applications included in the source code also have their own namespaces, but this is not a
requrement for developing GridPACKased applications.

To help with remory management, many GridPA@khctions return boost shared pointers

instead of conventional C++ pointers. These can be converted to a conventional pointer using the
get() command. We also recommend ttieg type ofpointers be converted using a

dynamic_cast instead of conventional-6tyle cast.
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Application files should iolude thegridpack.hpp  header file. This can be done by adding
the line

CET Al OARA 2COEAPAAEYET Al OAAYCOEADPAAEt EPbe

at the top of the application .hpp and/or .cpp files. This file contafisitions of all the
GridPACK modules and their associated functions

Matrices and vectors in GridPACKereoriginally complexbut now either complex or real
matrices can be created using the librémgide the GridPACK implementation, the underlying
distributed matrices are either complex or real, but the frameworkaddgier that supports both
types of objects, even if the underlying math library does not. However, computations on
complex matrices will perform better if the underlying math library is configured to use complex
matrices directly. This should be kept imich when choosing the math library to build

GridPACK on The underlying PETSc library can be configured to support either real or
complex matricesComplex numbrs are represented in GridPA@K having type

ComplexType . The real and imaginary parts of amqaex numbex can be obtained using the
functionsreal(x)  andimag(x)

Network Module
The network mdule is designed to represent the power gnidhasfour major functions

1) The netwok is a container for the gridpology.The comectivity of the networks
maintained by the network object and can be made available through requests to the
net wor k. The net wohroks tadl sbosecarnadilsaradedsdms t he fAg
determines whether a bus or branch is owned by a particular processor or represents a
ghost image of a bus or branch owned by a neighboring processor.

2) The network topology cape decorated with bus and branch objectsdbactribethe
properties of the particular physical 8@ under investigation.ul8 and branch objects
are written by the@plication deviper andncorporate the grid modahd the analyses
that need to be performed on it. Different applications will use different bus and branch
implementations.

3) The network module is responsilite supplyingupdate operations that can bediso
fill in the value of ghost cell fields with current data from other proces$besupdats
of ghost buses and ghost branches have been split into separate operations to give users
flexibility in optimizing performance by minimizing the amount ofal#ftat needs to be
communicated in the codklany applications do not require exchanges of branch data.

4) The network contains the partitioner. The partitioner is embeddée imetwork module
but it isa substantiatomputationatechnology in its own righPartitioning is a key part
of parallel application development. It represents the act of dividing up the problem so
that each processor is left with approximatelyag@mounts of work. At the same time,
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the partition is chosen so thr@mmunication b&teen processors (a major source of
computational inefficiency in HPC programs) is minimized.

A network is illustrated schematically igure 3 Each bus and branch has an associated bus or
branch object. The buses and branches are derived from bass thatspecify certain

functions that must be implemented by the application developer so that the networtecact
with other GridPACKmodules. In addition, the application can have functionalitgide the

base class that imique to the particutapplication.

Framework-
defined
d interface

Figure 3. Schemact representation of a GridPACHKetwork. The squares are branch objects and
the circles are bus objects. Framewspecified interfaces are green and user supplied
functionality is blue.

A major use of the pariibner isto rearrange the network in a form that is useful for computation
immediately after it is read in from an external file. Typically, the information in the external file
is not organized ia way that is necessarily optinfat computationsothe patitioner must
redistributedata suchthateach processor contains at most a few large connected subsets of the
network The partitioner is also regpsible for adding the ghost $®s and branches to the

system.

Ghost buses and branches in a parallgyanm represent images of buses and branches that are
owned by other processes. In order to carry out operations on buses and branches it is frequently
necessary tgain access to data associated with attached buses and brahehe®st efficient

way to d this is to create copies of the buses and branches from otherspredést are
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connected tdocally owned objects. Mlocal network componenthenhave a complete set of
attached neighbor3he ghost objds areupdated collectively with current iofmation from

their home processors at points in the computation. Updating all ghosts at once is almost always
more efficient than accasg data from oneemotebus or branch at a time.

The use of the partitioner to distribute the network between diffprenessors and create ghost
nodes and branches is illustrated in FigurEigure4(a) shows a simple network and Figures
4(b) and4(c) show the result of distributing the network between two processors.

()

Process 1

/

Process O

18



(b)

Process 0

Ghost Buses
and
Branches

(©)

Process 1

Ghost Buses
and
Branches

Figure 4. (a) a simple network (b) partitiasf network on processor 0 (b) partition of network on
processor 1. Open circles indicate ghost buses and dotted lines indicate ghost branches.

Networks can be created using the templated baseBaastNetwork<class Bus,

class Branch> , whereBus andBranc h are applicatiorspecific classes describing the
properties of buses and branches in the networkBaseNetwork class is defined within the
gridpack::network namespacdn addition to theBus andBranch classes, each bus and
branch has an associatedt aCollection object, which is described in more detail in the
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network components section. ThataCollection object is a collection of keyalue pairs
that acts as an intermediary between data that is read in from external configuration files and the
bus aw branch classes that define the network.

TheBaseNetwork class contains a large number of methods, but only a relatively small
number will be of interest to applicatiolevelopers. fie remaining methodwe usegrimarily
within other GridPACKmodules tamplement higher level capabilitieBhis document will
focus on calls that are likely to be used by application developers.

The constructor for the network class is the function
BaseNetwork(const parallel::Communicator &comm)

TheCommunicator object isused to define the set of processors over which the network is
distributed.Communicators are discussed in more detail below. The netwasgtructor creates

an empty shelihatdoes not contain any information about an actual network. The remainder of
the retwork must be built up by adding buses and branches to it. Typically, buses and branches
are added by passing the netwtwrla parser (see import module) which will create an initial
version of the network. The constructor is paired with a correspondstgudtor

~BaseNetwork()
that is called when the network object passes out of scope or is explicitly deleted by the user.

Two functions are available that return the number of buses or branches that are available on a
process. Tis number includes bothuses and branchekat are held locallgs well as any ghosts
that may be located on the process.

int numBuses()

int numBranches()

There are also functions that will return the total number of buses or branches in tek.netw
These numbers ignore ghdstes and ghost branches.

I nt totalBuses()

I nt totalBranches()

Buses and branches in the network can be identified usinglaridea that runs from O to the

number of buses or branches on the prooesas 1(0-based indexing). For some calculations,

it is necessary to identify one bus in the network as a reference bus. This bus is usually set when
the network is created using an import parser. It can subsequently be identified using the function

int getReferenceBus()
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If the reference bus is located on tphiscessor (either as a local bus or a ghost) then this
function returns the local index of the bus, otherwise it retidrns

Ghost buses and branches are distinguished from locally owned buses and branches based on
whet her or not t lofnctiomssr e fiacti veodo. The tw

bool getActiveBus(int idx)

bool getActiveBranch(int idx)

provide the active status of a bus or branch on a process. Thadrdéx a local index for the
bus or branch.

Buses and branches are characterized by a number of different indieas.t@local index,

already discussed above, but there are several others. Most of these are used internally by other
parts of the framework but efndex is of interest to application developers. This is the
Aoriginal 6 bus i ndeckbedinkteenput filehttee buses tarevlabrelkd withsa d e s
(usually) positive integer. Ere or no requirements that thésteges be consecutive, only that

each bus has its own unique ind&ke value of this index can be recovered using the function

int get  OriginalBusindex(int idx)

The variabladx is the local index of the bus. Branches are usually described in terms of the
original bus indices for the two buses at each end of the branch, so there is no corresponding
function for branches. Instead, the prdare is to get the local indices of the two buses at each
end of the branch and then get the corresponding original indices of the buses. This information
is usually used for output.

It is frequently necessary to gain access to the objects assocititedeh bus or branch. The
following four methods can be used to access these objects

boost::shared_ptr<Bus> getBus(int idx)
boost::shared_ptr<Branch> getBranch(int idx)
boost::shared_ptr<DataCollection> getBusData(int idx)

boost::shared_ptr<DataCollectio n> getBranchData(int idx)

The first two methods can be used to get Boost shared pointers to individual bus or branch
objects indexed by local indicedx . The second two functions return pointers to the
DataCollection objects associated with each bus @moh. Thes®ataCollection

objects can based to initialize the bus and branch objects at the start of a calcldatitrey
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are alsauseful when converting a network of one type to a network of another type. This often
happens when different computatsoare chained together.

The following functions can be useful for handling input that is directed at certain network
components

std::vector<int> getLocalBusIndices(int idx)
std::vector<int> getLocalBranchindices(int idx1, int idx2)

These functions returnlet of local indices that correspond to either the original bus irdlex

for a bus, or the pair of indicé$x1 ,idx2 for a branch. The reason that a list is returned

instead of a single index is thatthe cas®f ghost buses and branches, more theawpy of a
network component may exist on a process. If no copies of a network component exist on a
process then the returned vector has zero length. These functions can be used for applications
such as contingency analysis, wheredifications are mad® a single network component and

the modifications are specified in terms of the original bus indices. These functions can be used
to find the local index of the component, if it exists.

The network partitioner can be accessed via the function
void parti  tion()

The partition function distributes the buses and branches across process#ratsiueh
connectivity to branches and buses on other processors is minimizealsdt issponsible for
addingghost buses and branches to the network. This fundtimmd be called after the network
is read in but before any other operations, such as setting up exchange buffers or creating
neighbor listshave been performed.

Finally, two sets of functions are required in order to set up and execute data exchanges bet
buses and branches in a distributed network. These exchanges are used to move data from active
components to ghost components residing on other processors. Before these functions can be
called, the buffers in individual network components must beatka. See the documentation

below on network components and the network factory for more information on how to do this.
Once the buffers are in place, bus and branch exchanges can be set up and executed with just a
few calls. The functions

void initBusUpd  ate()

void initBranchUpdate()

are used to initialize the data structures inside the network object that manage data exchanges.
Exchanges between buses and branches are handled separately, since not all applications will
require exchanges between both sétsbjects. The initialization routines are relatively complex
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and allocate several large internal data structsmethey should not be called if there is no need
to exchange datas part of the algorithm

After the updates have been initialized, ip@ssible to execute a data exchange at any point in
the code by calling the functions

void updateBuses()

void updateBranches()

These functions wiltause datan ghost buses and branches to be updated with current values
from active buses and branchesatad on other processors

One additional network function that can be useful in certain circumstances is the capability for
recovering the communicator on which the network is defined

const Communicator& communicator() const

This function can be used implementingalgorithms based on multilevel parallelism.

Recovering the communicator is also needed for converting applicatiormitdes that can be

used to create higher level workflows that combine multiple different types of applications. This
is discused in more detail below.

TheBaseNetwork methods described in this sectiare only a subset of the total functionality
available but they represent most of thethodghat a typical developer would use. The
remaining functions are primarily used to impent other parts of the GridPACkKamework

but are generally not required by people writing applicatidtmse information on how the
functionsdescribed abovare used in practice can muhd in the section on GridPACK
factories.

Math Module

The math mduleprovides supportin GridPACK for distributed matrices and vectpligear
solvers, noflinear solvers, and preconditione@nce creatednatrices can be treated as opaque
objects and manipulated using a high level syntaxist@mparable to writing/latlab codeThe
distributed matrix and vector data structures themsealrzased on externablver libraries and
represent relativellightweight wrappers on multipurpose HGdes. The current math module
is built on the PETSc library but other lilbies, such as Hypre andillmos couldpotentiallybe
used instead

The main fuitionality associated with the math modul¢his ability to instantiate new matrices
and vectors, add individual matrix and vector elements (and their valueshtattingvector
objects,nvoke theassemble operation on the objgmtrform basic algebraic operations, such as
matrix-vector multiply,and solve systems of algebraic equatidrse assemble operation is
designed to give the library a chance to set up internaktfatztures and repartition the matrix
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elements, etc. in a way that will optimize subsequent calculatimeigsion of this operation
follows the syntax of most solver libraries whenytlbenstruct a matrix or vector.

In addition to basic matrix operatis, the math module contains linear and-hio@ar solvers

and precondibners. Themodule provides simple interface on top of the PETSc libraries that
will allow users access to this functionality without having to be familiar with the libraries
themsebes. This should make it possible to construct solver routines that are comparable in
complexity to Matlab scripts. The use of a wrapper instead of having users directly access the
libraries will also make it simpler to switch the underlying library irapplication. All that will

be requireds thatdeveloperdink to animplementation of the math module interface that is built
on a differemlibrary. There will not be aeed to rewrite any application code. This has the
advantage that if a different ldmy is used for the math module in one application, it instantly
becomes available for other applications.

The functionality in the math coropent is distributed between the cladskesrix |,

RealMatrix , Vector , RealVector ,LinearSolver , ReallLinearSolver,

NonlinearSolver andRealN onlinearSolver . Each of theeclassess in the

gridpack::math namespace arid described belovLike theBaseNetwork class, there

are a lot of functions iMatrix andVector that do not need to be used by usktsst of the
functiors related to matrix/vear instantiation and creati@re usednside themapper classes
described below, which eliminates the need for users to deal with them directly. However, users
may be interested in creating functions not covered by existing libratlyods and in this case
access to these functions is useful.

An additional note on the math module class names is in order. Originally, GridPACK only
supported complex objects and used the nareesor , Matrix , etc. More recently, the
capability for supprting real objects was added and hence the new rRea¥ector , etc
The original names continued to be used for complex objects to maintain backwards
compatibility. Complex objects can also be accessed using the CamgdexVector
ComplexMatrix , etc.,which are mapped to the original complex objects.

Matrices

TheMatrix  and RealMatrix clas®s aralesigned to create distributed matriddaitrix

is used for complex matrices aRéalMatrix  is used for real matrices. The matrix classes
supporttwo types ofmatrix, Dense andSparse . In most cases users will want to use the
sparse matrivut some applications require denseras. TheMatrix andRealMatrix

classes are nearly identical in functionality, so in the following we will only outline operations
ontheMatrix class. In most case$ietRealMatrix  class contains the same operations. The
only point to note is that for any opsions that involve multiple matrices or a matrix and a
vector, all matrix and vector objects mbsteither all complex or aleal. In the future, we plan
on adding some operations that will allow users to convert between types.
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The matrix constructor is

Matrix( const parallel::Communicator &comm :
const int &local_rows,
const int &cols,
const Storag eType &storage_type=Sparse)

The communicator objecommspecifies the set of processors that the matrix is defined on, the
local_rows parameter corresponds to the number of rows contributed to the matrix by the
processor, theols parameter indicates whidite second dimension of the matrix is and the
storage_type  parameter determines whether the matrix is sparse or dense. If the total
dimension of the matrix is MxN, then the sum of lib@al_rows  parameters over all
processors must equal M and teds parameter is equdo N. The matrix destructor is

~Matrix()

Once a matrix has been created some inquiry functions can be used to probe the matrix size and
distribution. The following functions return information about the matrix.

int rows() const
int localRo  ws() const
void localRowRange(int &lo, int &hi) const

int cols()

The functionrows will return the total number of rows in the matiecalRows returns the
number of rows associated with the calling processcalRowRange returns thdo andhi
index d the rows associated with the calling processorcatsl returns the number of columns
in the matrix. Note that matrices are partitioned into row blocks on each processor.

Additional functions can be used to add matrix elements to the matrix, eithetr atiena or in
blocks. The following two callsan be used to reset existing elements or insert new ones.

void setElement(const int &i , const int &j,
const ComplexType &x)

void setElements(const int &n, const int *i , const int *j,
const ComplexType *X)

For real matrices, all variables of tygemplexType should be switched to tyguble . The
first function will set the matrix element at the index locafiorj) to the value. If the
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matrix element already exists, this @ion overwrites the value, if the element is not already

part of the matrix, it gets added with the vakuéNote that bothh andj are zerebased indices.

For the current PETSc based implementation of the math module, it is not required that the index
i lie between the values td andhi obtained witHocalRowRange function, but for

performance reasons it is desirable. Other implementations may requirdiéhit this range.

The second function can be used to add a collection of elements all af lbasmriablen is the
numberof elements to be added, the arraysndj contain the row and column indices of the

matrix elements and the arraycontains their valueg\gain, it is preferable that all valuesiin

lie within the rangglo,hi]

Two functians that are similar to the set element functions above are the functions

void add Element(const int &i , const int &j,
const ComplexType &x)

void add Elements(const int &n, const int *i , const int *j,
const ComplexType *X)

These differ from the set element functions only in that instead of overwriting the new values
into the matrix, these functions will add the new values to whatever is already there. If no value
is present in the matrix at that location the function inserts

In addition to setting or adding new elements, it is possible to retrieve matrix values using the
functions

void get Element(const int &i , const int &j,
ComplexType &x) const

void get Elements(const int &n, const int *i , const int *j,
ComplexType *x) const

These functions can only access elements that are local to the processor. This means that the
indexi must lie in the rangpo,hi] returned by the functiolocalR owRange.

Finally, before a matrix can be used in compatss, it must be assembled and internal data
structures must be set up. This can be accomplished by calling the function

void ready()
After this function has been invoked, the matrix is read for use and can be used in computations.

In general, the procedai for building a matrix is 1) create the matrix object 2) determine local
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parameters such &s andhi 3) set or add matrix elements and 4) assethiglmatrix using the
ready function.For most applications, users can avoid these operationgiloyng matrices
and vectors using the mapper functionality described below.

Some additional functions have been included in the matrix class that can be useful for creating
matrices or writing out their values (e.g. for debugging purposes). It is often usekdte a
copy of a matrix. This can be done using the clone method

Matrix* clone() const
The new matrix is an exact replica of the matrix that invokes this function.

Two functions that can be used to write the contents of a matrix, either to standareotdut
file are

void print (const char *filename=NULL) const
void save(const char *filename) const

The first function will write the contents of the matrix to standard output if no filename is
specified, otherwise it writes to the specified file, theoseddunction will write a file in

MatLAB format These functions can be used for debugging or to create matrices that can be fed
into other programs.

Once a matrix has been created, a variety of methods can be applied to it. Most of these are
applied aftetheready call has been made by the matrix, but some operations can be used to
actually build a matrix. These functions are listed below.

void equate(const Matrix &A)

This function setg¢he calling matrix equal to matri.

void scale(const ComplexType &x )

Multiply all matrix elements by the value(use a value of typgouble for a real matrix).
void multiplyDiagonal(const Vector &x)

Multiply all elements on the diagonal of the calling matrix bydbeesponding element of the
vectorx. TheVector classis described below.

void addDiagonal(const Vector &x)
Add elements ofhe vectorx to the diagonal elements of the calling matrix.

void add(const Matrix &A)
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Add the matrixA to the calling matrix. The two matrices must have the same number of rows
and columns, but otherwise there are no restrictions on the data layout or the number and
location of the no+zero entries.

void identity()

Create an identity matrix. This function assumes that the calling matrix has been created but no
matrix elements have beessigned to it.

void zero()

Set all norzero entries to zero.

void conjugate(void)

Set all entries to their complex conjugate valllgs function only applies to complex matrices.
The following functions create a new matoxvector
Matrix *multiply(cons t Matrix &A, const Matrix& B)
Multiply matrix A times matrixB to create a new matrix.
Vector *multiply(const Matrix &A, const Vector &x)
Multiply matrix A times vectox to get a new vector.
Matrix *transpose(const Matrix &A)

Take the transpose of matrx

Vectors

The vector class operates in much the same way as the matriAsladgve, most functions
apply to both th&/ector andRealVector class so only th¥ector operations are
described heréhe vector constructor is

Vector(const parallel::Communi cator& comm, const int& local_length)

The parametdocal_length is the number of contiguous elements in the vector that are held
on the calling processofhe sum ofocal_length over all processors must equal the total
length of the vectoiThe functions

int size(void) const
int localSize(void) const
void locallndexRange(int &lo, int & hi) const
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can by used to get the global size of the vector or the size of the vector segment held locally on
the calling processor. THecallndexRange  function can be use find the indices of the
vector elements that are held locally.

Vector elements can be set and accessed using the functions

void setElement(c  onst int &i, const ComplexType & X)
void setElementRange(co nst int & lo, const int &hi, Complex Type *X)
void setEle ments(constint& n, const int *i, const Complex Type *X)
void addElement(c onst int &i, const ComplexType & X)

void addElements(const int& n, const int *i, const ComplexType *x)
void getElement(const int& i, ComplexType& x) const
void getElements(const int& n , const int *i, ComplexType *x) const
void getElementRange(const int& lo, const int& hi,
ComplexType *x) const
void ready(void)

These functions all operate in a similar way to the corresponding matrix operations. The
setElementRange function, etc. are similar to treetElements  function except that

instead of specifying individual element indices in a separate vector, the low and high indices of
the segment to which the values are assigned is specified (this assumes that the vaues in t
arrayx represent a contiguous segment of the vectdggin, for real vectors, all values of type
ComplexType shoutl be replaced by values of tygeuble The utility functions

Vector *clone(void) const
void print(const char* filename = NULL) const
void save(const char *filename) const

also have similar behaviors to their matrix counterparts.
Additional operations that can be performed on the entire vector include

void zero(void)

void equate(const Vector &x)

void fill(const ComplexType& V)

ComplexType norml(void) const

ComplexType norm2(void) const

ComplexType norminfinity(void) const

void scale(const ComplexTypeé& x)

void add(const ComplexType& X)

void add(const Vector& x, const ComplexType& scale = 1.0)
void elementMultiply(const Vector& x)

29



void elemen tDivide(const Vector& x)

Thezero function sets all vector elements to zéheequate function copies all values of the
vectorx to the corresponding elements of the calling vedilbr, sets all elements to the value
v, norml returns the Lnorm of thevector,norm2 returns the L.norm andnorminfinity

returns the k norm.Thescale function can be used to multiply all vector elements by the
valuex, the firstadd function can be used to add the conskatd all vector elements and the
secondadd function can be used to add the vectdo the calling vector after first multiplying

it by the valuescale . The final two functions multiply or divide each element of the calling
vector by the value in the vector

The following methodsnodify the values athe vector elementssing some function of the
element value

void abs(void)
void real(void)
void imaginary(void)
void conjugate(void)
void exp(void)
void reciprocal(void)

The functionabs replaces each element with its complex norm (absolute vaha), and
imaginary replace the elements with their real or imaginary valc@sjugate replaces the
vector elemerstwith their conjugate valug exp replacesachvector element witlthe
exponential of its original value arrdciprocal replaces each element ity reciprocalThe
real ,imaginary andconjugate functions only apply to complex vectors.

Linear Solvers
The math module also contains solvers. CimearSolver class contains a constructor

LinearSolver(const Matrix &A)

that creates an instance of theveol The matriXA defines the set of linear equatiohs=b that
must be solvedf matrix A is aRealMatrix  then the corresponding class and its constructor is

RealLinearSolver(const RealMatrix &A)
The properties of the solver can be modified by callirgftimction

void configure(utility::Configuration::Cursor *props)
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The Configuration module is described in more detail below. This function can be used to

pass information from the input file to the solver to alter its propefmsthe PETSc library, the
solver algorithm can be controlled using PETS
can be passed to PETSc by includirigock in the input deck (there is more documentation on

input decks in the section on t@@nfiguration module) An exampleof this type of input is

<LinearSolver>
<PETScOptions>
- ksp_view
- ksp_type richardson
- pc_type lu
- pc_factor_mat_solver_package superlu_dist
-ksp_max_it1
</PETScOptions>
</LinearSolver>

TheLinearSolver block is where different seér parameters are defined and the

PETScOptions block is where a string can be passed to the runtime options database.
Additional parameters that can be passeth#osolver includ&olutionTolerance :

MaxlIterations andFunctionTolerance . Some solvers thatre available in PETSc only

run serially and will fail if run on more than one processor. However, for the problem size ranges
frequently encountered in power grid analysis, the serial solvers may be the fastest options. Other
parts of the code may be ma@ealable so it is desirable to run them in parallel. GridPACK has
options that allow users to run the code in parallel while using a serial, soitterut the need to

modify any application source code. This can be done by including the options

<ForceSer ial>true</ForceSerial>
<|nitialGuessZero>true</InitialGuessZero>
<SerialMatrixConstant>true</SerialMatrixConstant>

in the LinearSolver block. The first option can be used to replicate the linear solver across all
processors in the system and then distelthé answer to processors. The second option
eliminates the need for obtaining an initial guess for the solution from all processors and
provides additional performance gains. The final optiam be used if theatrix does not

change between function ¢l Only new versions of the RHS vector ndede replicated on

each processor after the first call. This can also result in performance gains.

After configuring the solver, itan be used to solve the set of linear equations by calling the
method

void so Ive(const Vector &b, Vector &x) const
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This function returns the solutionbased on the right hand side vedior

Non-linear Solvers

The math module also supports Horear solverdor systems of the typ& ( x ) Ax = bub ( X )
the interfacas more complicaie than for the linear solvert order for the noitinear solver to

work, two functions must be definéy the user. The firgvaluats the Jacobian of the system

for a given trial stat& of the system and tteecond computebe right hand sideectorfor a

given trial statex. The two functions are of typlacobianBuilder and

FunctionBuilder . TheJacobianBuilder function is a function with arguments

(const math::Vector &vec, math::Matrix &acobian)
andFunctionBuilder is a function with arguments
(const math::Vector &Current, math::Vector &newRHS)

These functions need to be added to the system somewheyecan then be assigned to objects
of typeJacobianBuilder andFunctionBuilder and passed to the constructor of the
norlinear solver. Therare a number of ways to do this. In the following discussion, we will
adopt the method used in the Horear solver version of the power flow codattis distributed
with GridPACK

The first step is to define a struct that can be used to implemeninitteohs needed by the non
linear solver(the actual implementation contains additional declarations and code, but the
important features of this helper class are outlined here)

struct SolverHelper : private utility::Uncopyable

{ /[Constructor
SolverHe Iper (// Arguments to initialize helper // )
{
/I Initialize non - linear calculation
}
boost::shared_ptr<math::Matrix> matrix; I/l Jacobian matrix
boost::shared_ptr<math::Vector> X; /I Current state
void operator() (const math::V ector &xCurrent, math::vector &newRHS)
{
/l Evaluate RHS vector from current state xCurrent
}

void operator() (const math::Vector &xCurrent,
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math::Matrix &Jacobian)

/| Evaluate Jacobian from current state xCurrent

}
}

The important functionor this discussion are the overloadgzerator () functions. In the
application code, this helper struct can be initialized and used to create two functions of type
JacobianBuilder andFunctionBuilder using the syntax

SolverHelp er helper (//Arguments to initialize helper // );
math::JacobianBuilder jbuild = boost::ref(helper);
math::FunctionBuilder fbuild = boost::ref(helper);

At this pointjbuild  andfbuild  are pointing to the overloaded functgn helper that

havethe approprite arguments for a function of tygacobianBuilder and type
FunctionBuilder . Theboost::ref command provides a reference to the appropriate
function inhelper instead of making a copy, this preserves any state that might be present in
helper between invoations of the functionpuild  andfbuild by the solver.

Forthe power flow application using a ndinear solver, the creation of the solver is a-step
process. First@a pointer to a notinear solver interface is created and then a particular solver
instance is assigned to this interface. The pdher application can point to a haretdded
NewtonRaphson solver or a wrapperthe PETSc library of solvers. The code for this is the
following

boost::scoped_ptr<math::NonlinearSolverinterface> solver;
if (useNewton) {
math::NewtonRaphsonSolver *tmpsolver =
new math::NewtonRaphsonSolver(*(helper.matrix), jbuild, fbuild);
solver.reset(tmpsolver);

} else {
solver.reset(new math::NonlinearSolver(*(helper.matrix), jbuild,
fouild));
}
If you are only mterested in using tHgonlinearSolver , then it is possible to dispense with
theNonlinearSolverinterface and just use thBonlinearSolver directly. The

remaining call to invoke the solver is just

solver ->solver(*helper.X);
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Additional calls are likely tde addedo these to allow usespecified parameters from the input
deck to be sent to the solver. In the case oNivainearSolver , these can be used to
specify which PETSc solver should be used.

More details on how to use the nlimear solvers can bieund by looking at the powerflow
module in the GridPACK source code.

Network Components

Networkcomponents a generic term for objectspresentindgpuses and branches. These objects
determine the behavior of the system and the type of analyses besnd3damch components

can represent transmission lines and transformers while bus components could model loads,
generators, or something else. Both kinds of components could represent measurements (e.g. for
a state estimation analysis).

Networkcomponentgover a fairly broad range of behaviors and there is little that can be said
about them outside the context of a sfieproblem.Each component inherits from a matrix
vector interface, which enables the framework to generate matrices and vectors fnetwtrk

in a relatively straightforward way. In addition, buses inherit from a base bus interface and
branches inherit from a base branch interfade. relationship between thaséerfaces is shown

in Figureb.

MatVeclnterface GenMatVeclnterface
BaseComponent
/“\\
BaseBusComponent BaseBranchComponent
A A
AppBusComponent AppBranchComponent

Figure 5. Schematic diagram showing thterface hierarchy for network components.
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These base interfaces provide mechanisms for accessing the neighbors of a bus or branch and
allow developers to specify what data is transferred in ghost exchanges. They do not define any
physical properties ohe bus or branch, it is up to application developers to do this.

Of these interfaces, the matectorinterfaces arethe most importaniThe

MatVecinterface is used for most calculations that directly model the physics of the power
grid and described pbtems where the dependent and independent variables are associated with
buses. Th&enMatVecinterface Is used for problems where variables are also associated
with branches, such as state estimation or Kalman filter calculations. This section will describe
theMatVecinterface , theGenMatVecinterface is described in more detail later in this
documentTheMatVeclinterface Is designed to answére questiorof what block of data is
contributed by a bus dairanch to a matrix or vectand what the dimensions thfe block are.

For example, irtonstructing the Ymnatrix for a power flow problerasing a realvalued

formulation the grid componentepresentindpuses contributa 2x2 block to the diagonal of

the matrix.Similarly, the grid components representbirgnches contribute a 2x2 block to the
off-diagonal elements. (Note that if then¥atrix is expressed as a complex matrix, then the
blocks are of size 1x1.) The location of these blocks in the matrix is determined by the location
of the corresponding busesdaloranches in the network, but the indexing calculations required to
determinenow this location maps to a location in the matax be made completely transparent
to the user via the mapper module.

Because the matrixectorinterface focuses on smalldaks, itis relativelyeasy for power grid
engineers to writéhe corresponding methadghe full matrices and vectors can then be
generated from theatwork usingsimple calls to the mapper interfa@ee the discussion below
on the mapper modulelll of the base network component classes reside in the
gridpack::component namespace

The primary function of thiatVecinterface classis to enable developers to build the
matrices and vectors used in the solution algorittonthe network. It eliminateslargenumber
of tedious and errgprone index calculations that would otherwise neduefoerformed in order
to determine where in a matrix a particudata element should be placed. The
MatVeclinterface includes basic constructors and destructors. Thiesitsof nortrivial
operations aremplemented on buses and set the values of diagonal blocks in the matrix.
Additional functions are implemented on branches and set values-iagfinal elements.
Vectors can be created by calling functiole$ined orbuses. These functions are described in
detail below.

Thefunctions that are used to create diagonal matrix blocks are

virtual bool matrixDiagSize(int *isize, int *jsize) const

virtual bool matrixDiagValues(ComplexType *values)
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virtual bool matrixDiagValu es( Real Type *values)

Thesefunctions are virtual functions and are expecteld overwritten by applicatiespecific

bus and branch class&epending on whether the application should create real or complex
matrices, either theeal or complex versionsf matrixDiagValues can be implemented.

The default behavior is to return O feize  andjsize for matrixDiagSize and to return
false for all functions. fiese functions will not build a matrix unless overwritten by the
application. Not all functions nee¢d be overwritten by a given bus or branch class. Generally,
only a subset of functions may be needed by an application.

ThematrixDiagSize function returns the size of the matrix block that is contributed by the
busto a matrix. If a singleaumber is comtbuted by the bus, thmatrixDiagSize function

returrs 1 for bothisize andjsize . Similarly, for a2x2 block then botisize  andjsize

are set to 2. The return value is true if the bus contributes to thie,mo#terwise it is false.
Returning false&anoccur, for example, if the bus is the reference baspiower flow

calculation.For a more complicated calculation, such as a dynamic simulation with multiple
generators on some buses, the size of the matrix blocks can differ from bus to bus. Nu¢e that t
values returned bmatrixDiagSize refer only to the particular bus which the function is
invoked It does not say anything about other buses in the system.

ThematrixDiagValues function returns the actual values for the matrix block associated
with the bus for which the function is invokethe values are returned as a lingaayawith
values returned in coluramajor order. For a 2x2 block, this means the first value is at the (0,0)
position, the second value is at {ig0) position, the third valus at the (0,1) position arttie
fourth value is at the (1) Josition This function also returns true if the bus contributes to the
matrix and false otherwise. This may seem redundant, sinoeginexDiagSize function

has already returned this infornwat but it turns out there are certain applications where it is
desirable for thenatrixDiagSize function to return true and tmeatrixDiagValues

function to return falselhe buffervalues is supplied by the calling program and is expected
to be big enoug based on the dimensions returned byriarixDiagSize function, to
contain all returned values

The functions that are used to return values fed@fonal matrix elements are listed below.
These are usually only implemented for branches.

virtual boo | matrixForwardSize(int *isize, int *jsize) const
virtual bool matrixForwardValues(ComplexType *values)

virtual bool matrixReverse Size(int *isize, int *jsize) const

36



virtual bool matrixReverse Values(ComplexType *values)

Only the complex versions of theiactions are listed but equivalent functions for real matrices

are availableThese functions work in a similar way to the functions for creating blocks along

the diagonal, except that theplit off-diagonal matrix calculations into forward elements and

reverse elements. The initial approximate location of awliafjonal matrix element in a matrix

is based in some internal indices assigned to the buses at either end of theSujapobke that
theseindicesare, correspondi ng jtcoo rtrhees piofnrdoi mog btuos tahned
Af orwardo functions asisememehat whhéeretheedirekw
assume that the request is for fiheelement. Another way of looking at this is the following: as

discussed below, branchesont ai n pointers to two buses. The
second is the fAtoo bus. The forward functions
i ndex of the el ement , the reverse fumconhd ons a

index of the element. Note that if a bus does not contribute to a matrix, then the branches that are
connected to the bus should also not contribute to the matrix.

The final set of functions in thdatVeclnterface that are of interest to application
developers are designed to set up vectors. These are usually implemented only for bsses. The
functions are analogous to the functions for creating matrix elements

virtual bool v ectorSize(int *isize ) const

virtual bool vectorValues(ComplexType *values)

ThevectorSize  function returns the number of elements contributed to the vector by a bus

and thevectorValues  returns the corresponding values. TeetorValues  function

expects the buffer values to be allocated by the calling program. In addition torisrib&t can

be used to specify a vector, there is an additional function that can be used to push values from a
vector back onto a bus. This function is

virtual void setValues(ComplexType *values)

The buffer contains values from the vector corresponiimgternal variables in the bus and this
function can be used to set the bus variablesséhéalues function could be used to assign

bus variables so that they can be used to recalculate matrices and vectors for an iterative loop in a
nonlinear solvernr so that the results of a calculation can be exported to an outpRefae.

versions of thevectorValues  andsetValues functions are available for real vectors.

TheBaseComponent class contains additional functions that contribute to the paxpertis
of a bus or branch. Again, most of the functions in this class are virtual and are expected to be
overwritten by actual implementations. However, not all of them need to be overwritten by a
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particular bus or branch clagdany of these functions are usedconjunction withthe
BaseFactory class, which defines methods that run over all buses and branches in the
network and invokes the functions defined below.

Theload function
virtual void load(const boost::shared_ptr<DataCollection> &data)

is used to inmniate components based on datséhe network configuration file that is used to
create the network. It is used in conjunction withEa¢aCollection object, which is
described in more detail below. Networks are generally created by first instardiagtgork
parser The parser is usdd read in an external network file and create the network topology.
The next step is to invoke the partition function on the network to get all network edement
properly distributed between processors. At this pthetnetwork, including ghost buses and
branches, is complete and each bus and branchDas@ollection object containing all
the data in the network configuration file that pertains to that particular bus or branch. The data
in theDataCollection objectis stored asimplekey-value pairs. This data issed to
initialize the correspondinigus or branch by invoking the load functiom all buses and
branches in the system. The bus arahbh classes must implement tbad function to extract
the correcparameters from thBataCollection object and use thero &ssign internal
componenparameters.

Only one type of bus and one type of branch is associated with each network but many different
types of equations can be generated by the network. To allowodergto embed many

different behaviors into a single network and to control at what points in the simulation those
behaviors can be manifested, the concept of modes is used. The function

virtual void setMode(int mode)

can be used to set an internal vialgain the component that tells it how to behave. The variable

fimoded usually corresponds to an enumerated con:
For example, in a power flow calculation it might be necessary to calculate bothnih&ix

ard the equations for the power flow solution containing the Jacobian matrix and tHeamght

side vector. To control which MMBusoriaxndgets cr e
fJacobian 0O . | n snatrk édunctionsan théMatVec Interface  , there is a aadition

if (p_mode == YBuSs) {

// Return values for Y - matrix calculation
} else if (p_mode == Jacobian) {

// Return values for power flow calculation

}

38



The vap_inadl @ si an internal vari abihgghei n t he bus
setMode function.

The function

virtual ~ bool serialWrite(char *string, const int bufsize,
const char *signal = NULL)

is used in the serial IO modules described below to write out properties of buses or branches to
standardot put . The cshilgr actent Buhten fiormatted | in
the properties of the bus or branch that is written to standard outpug v aufsiza bd e 0
gives the numbegtingp fo a«char dtadtledr,vwsasagnhdbft | ehan b e us e
to control what data is written authe return value is true if the bus or branch is writing out data

and false otherwise. For example, if the application is writing out the properties of all buses with
gener at or s, genéra nor & hnei gshssgctmthis ghibroutine. If a bus has
generators, then a ststingndg arsd ctolpe efdun ;mttioor hreet
ot herwise it retsimgngd fal akl odahee d ulbheearidold cal |
A buf s pravided soithat the bus or branch can deterihiinés overwriting the buffer.

Returning to the generator example, if this call returns a separate line for each generator, then it

is possible that a bus with too many generators might exceed the méfertgs could be

detected by the implementation if the buffer size is kndare information on how this

function is used can be found in the discussion of the serial 10 modules.

TheBaseComponent class also containsvd functions that must be implemedtif buses

and/or branches need to exchange data with other processors. Data that must be exchanged needs
to be placed in buffers that have been allocated by the network. The bus and branch objects
specify how large the buffers need to be by implemenkiagunction

virtual int getXCBufSize()

This function must return the same value for all buses and all branches in the same bus or branch
classes. Buses can return a different value than branchescdfoplejn a power flow

calculation, it is necessarydt ghost buses get new values of the phagéand voltage

magnitude increments. These are both real numbers gettk€BusSize routine needs to

return the valu@*sizeof(double) . Note that all buses must return this value even if the

bus is a referemcbus and does not participate in the calculation.

This function is queried by the network and used to allocate a buffer of the appropriate size. The
network then informs the bus and branch objects where the location of the buffer is by invoking
the functon

virtual void setXCBuf(void *buf)
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The bus or branch can use this functioset internal pointers this buffer that can be used to
assign values to the buffer (which is done before a ghost exchange) or to collect values from the
buffer (which is donafter a ghost exchang&ontinuing with the powerflow example, the bus
implemention of thesetXCBuf function would look like

setXCBuf(void *buf)

{
p_Ang_ptr = static_cast<double*>( buf);
p_Mag_ptr = p_Ang_ptr +1,

}

The pointerp_Ang_ptr andp_Mag_ptr of typedouble are internal variables of the bus
implementation and can be used elsewhere in the bus whenever the voltage angle and voltage
magnitude variables are needed. After a network update operation, ghost buses will contain
valuesfor these variables that were calculated on the home processor that owns the
corresponding bus.

TheBaseBusComponent andBaseBranchComponent classes contain a few additional
functions that are specific to whether or not a component is a bus or a Qraach.
BaseBusComponent class contains functions that can be used to identify attached buses or
branches, determine if the bus is a reference bus, and recover the original indices of the bus.
Other functions are included in tBaseBusClass but these are notsually required by
application developemnd are used primarily to implement other GridPACK functions

To get a list of pointers to all branches connected to a bus, the function

void getNeighborBranches(
std::vector<boost::shared_ptr<BaseComponent> > &nghbrs) const

can be cdéd. This provides a list gfointersto all brancheshat have thealling bus as one of

its endpoints. Thigunctioncan be used inside a bus method to loop over attached branches,
which is a common motif in matrix calculationgrfexample, to evaluate the contribution to a
diagonal element of the-khatrix coming from transmission lines, it is necessary to perform the
sum

W B &

where theyj; are the contributiodue to transmission linesom the branch connecting i and .
The code inside a bus component that evaluates this sum can be written as

std::vector<boost::shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);
ComplexType y_diag(0.0,0.0);
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for ( inti=0; i<branches.size(); i++) {
YBranch *branch = dynamic_cast<Y  Branch*>(branches[i].get());
y diag += branch - >getYContribution();

}

The functiongetY Contribution evaluates the quantily; using parameters that are local to
the branch. The returraiue is then accumulated into the bus varigbldiag , which is
eventually returned through theatrixDiagValues function. Thedynamic_cast is
necessary to convert the pointer froaseComponent object to the application class
YBranch . TheBaseComponent class has no knowledge of thetYContribution

function, this is only implemented the classyBranch .

A function that is similar tgetNeighborBranches IS

void getNeighborBuses(
std::vector<boost::shared_ptr<BaseComponent> > &nghbrs) const

which can le used to get a list of the buses that are connected to the calling bus via a single
branch.

Many power grid problems require the specification of a special bus as a reference bus. This
designation can be handled by the two functions

void setReferenceBus(b ool status)

bool getReferenceBus() const

The first function can be used (if called with the argument true) to designate a bus as the
reference bus and the second function can be called to inquire whether a bus is the reference bus.
A reference bus is usliyaset when the network configuration file is read in and does not need to

be set explicitly by the application.

Finally, it is often useful for exporting results if the original index of the bus is available. This
can be recovered using the function

int getOriginalindex() const

Thefunctiors in theBaseBusComponent class only worlcorrectly after a call to the base
factory methodetComponents , whichis described belowDther functions in the
BaseBusComponent class are needed within the framework butrexteusually required by
application developers.
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TheBaseBranchComponent class is similar to thBaseBusComponent class and
provides basic information about branches and the buses at either end of the branch. To retrieve
pointers to the buses at the end¢hefbranch, the following two functions are available

boost::shared_ptr<  BaseComponent> getBus1() const

boost::shared_ptr<BaseComponent> getBus2() const

ThegetBusl f uncti on returns a pmetBus2t farctionreturnsahe Af r om
pointertote At o0 bus.

Two other functions in thBaseBranchComponent class that are useful for writing output
are

int getBus1Originallndex() const

int getBus20Originallndex() const

~

These functions get the original i andhessareof fAfr
not characterized by a single index. Similattte functions ithe BaseBusComponent class,
thefunctionsin theBaseBranchComponent classwill not work correctly until the

setComponents method has been called in the base factory class.

Finally, a separate network component class that is associated with all buses and branches
(including ghost buses and branches) isDa&aCollection class. This class is a simple
container that can be used to store-kalye pairslt also resides in the

gridpac k::component namespacaVhen the network is created using a standard parser to
read a network configuration file (see more on parsers below), each bus and branch in the
network, including the ghosts, has an associBedCollection object that contains lal
parameters from the configuratiatefthat are associated with tharticular bus or branch.

These can be retrieved from thataCollection object using some simple accessors. Data
can be stored in two ways inside thataCollection object. The first mathod assumes that
there is only a single instance of the k&jue pair, the second assumes there are multiple
instances. This second case can occur, for example, if there aygdergydimerators on a bus.
Generators are characterized by a collectioraoimeters and each generator has its own set of
parameters. The generator parameters can be indexed so that they can be matched with a specific
generator.

Assuming that a parameter only appears once in the data collection, the contents of a
DataCollection object can be accessed using the functions

bool getValue( const char *name, int *value)
bool getvValue( const char *name, long *value)
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bool getvValue( const char *name, bool *value)

bool getvalue( const char *name, std::string *value)
bool getvalue( const char*n ame, float *value)

bool getValue( const char *name, double  *value)
bool getValue( const char *name, ComplexType *value)

These functions return true if a variable of the correct type is stored Dath€ollection
object winaned t het tkegnsifalsee it r et

If the variable is stored multiple times in thataCollection , then it can be accessed with
the functions

bool getvValue( const char *name, int *value , const intidx )

bool getValue( const char *name, long *value , const intidx )

bool getvValue( const char *name, bool *value , const intidx )

bool getValue( const char *name, std::string *value , const intidx )
bool getValue( const char *name, float *value , const intidx )

bool getvValue( const char *name, double  *value , const intidx )
bool getvValue( const char *name, ComplexType *value , const intidx )

whereidx is an index that identifies a particular instance of the key. These functions are used
primarily to implement the network componéodd method, described aboter the
BaseComponent class

The data coélction is generally filled with values after the parser is called to create the network.
The nomenclature for these values can be found idigtenary.hpp file located under
src/parser  under the main GridPACK directory.

TheDataCollection objects can ab be used to transfer data between diffemetworks.

This is important for chaining different types of calculations together. For example, a powerflow
or state estimation calculation might be used to initialize a dynamic simulation and the
DataCollectio n object can be used as a mechanism for transferring data between the two
different networks. Because of this, the functions for adding more data to the

DataCollection and the functions for overwriting the values of existing data are useful.

New key valugpairs can be added to a data collection object using the functions

void addValue( const char *name, int value)
void addValue( const char *name, long value)
void addValue( const char *name, boolv  alue)
void addValue( const char *name, char * value)
void addValue (const char *name, float value)
void addValue( const char *name, double value)
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void

void
void
void
void
void
void
void

addValue( const

addValue( const
addValue( const
addValue( const
addValue( const
addValue( const
addValue( const
addValue( const

char *name, int

char *name, ComplexType

char *name, long
char *name, bool
char *name, char
char *name, float
char *name, double value
char *name, ComplexType value , const int idx

value)
value , const int idx )
value , const int idx )
value , const int idx )
*value , const int idx )
value , const int idx )
, const int idx )

Existing values can be overwritten with the functions

bool s etValue( const char *name, int value)

bool s etValue( const char *name, long value)

bool s etValue( const char *name, bool value)

bool s etValue( const char *name , char *value)

bool s etValue( const char *name, float value)

bool s etValue( const char *name, double value)

bool s etValue( const char *name, ComplexType value)

bool s etValue( const char *name, int value , const int idx )
bool s etValue( const char *name,lo ng val ue, const int idx )
bool s etValue( const char *name, bool value , const int idx )
bool s etValue( const char *name, char *value , const int idx )
bool s etValue( const char *name, float value , const int idx )
bool s etValue( const char *name, double value , constint id X)
bool s etValue( const char *name, ComplexType value , const int idx )

The functions return false if the value is not already irxa@Collection object.

Factories

The networkcomponent factory is an applicatiestependent piece of software timtesignedo
manage interactions between the networktaechetwork component objectost operations

in the factory run over all buses and all branches and invoke some operation corepchent
An examploa o0i 0 ptetAlerttfie oetwork is read iftom an external file, it
consists of a topology araket of simple dateollection objects containing kexaluepairs
associated with eadbus and branch. THead operationthen runs over all buses and branches
andinstantiates the appropriate objeloysinvoking alocalload methodthat takes the values
from the data collection object and uses it to instantiate the bus or branch. The application
network factory is derived from a base network factory class that contains some additional
routines thatet up indices, assign neighbdcsindividual buses anlbranches and assign buffers.
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The neighbors are originally only known to the network, so a separate operation is needed to
push this information down into the bus and branch comporgmsnetwork compant

factory may also execute other routines that contribute to setting up the network and creating a
well-defined state.

Factories can be derived from tBaseFactory class, which is a templated class tisdiased
on the network typdt resides in thgr idpack::factory namespacerlhe constructor for a
BaseFactory object has the form

BaseFactory<MyNetwork>(boost::shared_ptr<MyNetwork> network)

TheBaseFactory class supplies some basic functions that can be used to help instantiate the
components in a netwka Othermethod can be added for particular applicationsriheriting
from theBaseFactory class. The twonost important functions iBaseFactory are

virtual void setComponents()

virtual void setExchange()

ThesetComponents methodpushes topolgy information available fronthe network into the
individual buses and branches using methodkebase componemias®s This operation
ensures that operations swadygetNeighborBuses , etc.work correctly. The topology
information is originally only availaklin the network and it requires additional operations to
imbed it inindividual buses and branch@&eing able to access this information directly friira
buses and branchean simplify application programming substantially.

ThesetExchange function albcates buffers and sets up pointers incili@ponents so that
exchange of data between buses and branches can occur and ghost buses and branches can
receive updated values of the exchanged param@teissfunctionloops over the

getXCBusSize andsetXCBuf commands defined in the network component classes and
guarantees that buffers are properly allocated and exposed to the network components.

Two other functions are defined in tBaseFactory class as convenience functions. The first
is

virtual void load()

This function loops over all buses and branches and invokes the individual bus andda@dnch
methods. This moves information from thataCollection objects that are instantiated
when the network is created from a network configuration file to the lwlbranch objects
themselves. The second convenience function is

virtual void setMode(int mode)
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This function loops over all buses and branches in the netwdrkngokes each bus and branch
setMode method. It can be used to set the behavior of the emtiveork in single function call.

Someutility functiorsin theBaseFactory class that areccasionally usefudre

bool checkTrue(bool flag)
bool checkTrueSomewhere(bool flag)

ThecheckTrue function returns true if the variabliag is true on all processaqrstherwise it
returns falseThis function can be used to check if a condition has been violated somewhere in
the networkThecheckTrueSomewhere function returns true ffiag is true on at least one
processor. This function can be used to check if aitonds true anywhere in the system.

Mapper Module

Themappes areacollection of generic capabilitigbat can be used to generate a masor

vectos from thenetwork componentdhis isdone by running oveall thenetworkcomponents

and invoking m#hods in thanatrix-vector interfaceThemappelis basically a transformation

that converts a set of network components into a matrsectorbased on the behavior of the
matrix-vector interfaceslt has no explicit dependencies on either the netwonkponents or the

type of analyses being perfoed so this capability @pplicable across a wide range of

problemsAt present there are threges of mapper, the standard mapper described here that is
implemented on top of thdatVecinterface , a more gaeralized mapper that utilizes the
GenMatVeclinterface and a mapper for generating matricesemblingi f at 0 . These t or s
are dense matriceélat are basically a collection of column vectdrise generalized mapper and

its corresponding interface are deised in a later section belowlong with the mapper for

generating fat vectord he mapper discussed in this section is used for problems where both
dependent and independent variables are associated with buses, which is the case for problems
such as poer flow calculations and dynamic simulation. Other problems, such as state

estimation, have variables associated with both buses and branches and require the more general
interface.

Thebasicmatrix-vector interface contains functions that provide two gseaf information about
each network component. The first is the size of the matrix block that is contributed by the
component and the second is the values in that block. Using this information, the mapper can
calculatethe dimensions of the matrand whee individual elements in the matrix are located.
The construction oA matrix by the napper is illustrated in Figui@for a small network. Figure
6(a) shows a hypothetical networkhe contributions from each network component are shown
in Figure6(b). Note thatsome buses and branches do not contribute tm#tex. This could

occurin real systembecause the transmission line corresponding to the branch has failed or
because a bus represents the referencdrbasddition, it ispossible thabuses ad branchegan
contribute different size blocks to the matibhe mapping of the individual contriboafis from
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the network in Figuré(b) to initial matrk locations is shown in Figuc). This is followed by
elimination d gaps in the matrix in Figurg(d).

(@)

(b)
1
No matrix
contribution
No matrix
contribution
No matrix A0 /
contribution
6
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(©)

(d)

Figure 6. A schematic diagram of the matrix map function. The bus numbers in (a) and (b) map
to approximate row and column locations in (c). (a) a small network (b) matrix blocks associated
with branches and buses. Not that not all blocksheresame size and not all buses and branches
contribute (c) initial construction of matrix based on network indices (d) final matrix after
eliminating gaps

The most complex part of generating matrices and vectors is implementing the functions in the
MatVe cinterface. Once this has been donefually creating matrices and vectors using

the mappers is quimple The MatVeclnterface is associated wittwo mappers, one that
creates matrices from buses and branches and a second that can create vectosg$tddoth
mappers are templated objects based on the type of network beirandsgse the
gridpack::mapper namespacelheFullMatrixMap  object runs over both buses and
branches to set upraatrix. The constructor is

FullMatrixMa p<MyNetwork>boost::share d_ptr<MyNetwork> network)

The network is passed in to the object via the constructor. The constructor sets up a number of
internal data structurdssed on what mode has beenis¢he network components. For
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example, for a power flow application wherenitgght be necessary to create both-en#trix and

a Jacobian matrix, it would be necessary to create two mappers. If tmedjger is created
while the mode is set to construct tharatrix, then it will be necessary to instantiate a second
mapper to azate the Jacobian for a power flow calculat®efore instantiating the second
matrix, the mode should be set to Jacobian.

Once the mapper has been created, a matrix can be generated using the call
boost::shared_ptr<gridpack::math::Matrix> mapToMatrix()

This function creates a new matrix and returns a pointer to it. If a matrix already exists and it is
only necessary to update the values, then the functions

void mapToMatrix(
boost::shared_ptr<gridpack::math::Matrix > &matrix)

void mapToMatrix(gridpack:: math::Matrix &matrix)

can be usedlhese functions use the existing matrix data structures and overwrite the values of
individual elements. For these to work, it is necessary to use the same mapper that was used to
create the original matrix and to have game mode set in the network components.

Additional operations that can be used on existing matrices include

void overw riteMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)
void overw riteMatrix(gridpack::math::Matrix &matrix)

void incrementMatrix( boost::shared_ptr<gridpack::math::Matrix> matrix)
void incrementMatrix(gridpack::math::Matrix &matrix)

These operations are designed to support making small changes in an existing matrix instead of
reconstructing thé&ull matrix from scratch. This can hag@pin ©ntingencycalculations or

simulations of faults where a single grid element goes out or changes value. Instead of rebuilding
the entire matrix, it is possible to modify only a small portion if it. To use these functions, it is
necessary to defind Eeast two modes in the network components. The first mode is used to

build the original matrix, the second is used to make changeslatecinterface

functions that return true using the second mode (the one making changes) must return true for
the first mode (used to build the original matrix). Furthermore, all block sizes for the second
mode must match the block sizes in the first mode.ovee writeMatrix functions replace

the values in the matrix with the values returned byMh&/eclnterface functions, the
incrementMatrix functions add these values to whatever is already in the matrix.

The vector mapper works in an entirely analogous way to the matrix mapper. The constructor for
theBusVectorMap class is
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BusVectorMap<MyNetwork>boost::shared_ptr<My  Network> network )
and the function for builshg a new vector is
boost::share_ptr<gridpack::math::Vector > mapToVector()

The functions for overwriting the values of an existing vector are

void mapToVector(
boost::shared_ptr<gridpack::math::Vector > &vector)

void mapToVector(gridpack::math::Vector &vector)
The vector map can also be used to write values back to buses using the function
void mapToBus(const gridpack::math::Vector &vector)

This function will copy values from the vector into the bus using#t@alues function in
theMatVeclinterface

Parser Module

Theparsemodules aredesigned to read an extatmetwork file, set up the netwotépology

and assign any parameter fields in tihetb simple fields. The parseds not partition the

network, hey areonly responsible for reading in the network and distributing the different

network elements in a way that guarantees that not too much data ends up on any one processor.
Theparsers aralso not responsible for determining if the input is compatiith the analysis

being performed. This can be handlédiesired by building checks intaéhe network factory.
Theparsersareonly responsible for determining if thean read the file.

Currently, GridPACKonly supportgwo file formats Files basedrmmthe PSS/E PTI version 23

and version 38ormat can be read in using the clas®TI23 parser andPTI33 parser

Both parsergan also read PSS/E formatted .dyr files that are used to read in extra parameters
used in dynamic simulation. The parserstangplated classsthatagain use¢he network type as

a template argumerBoth PTI23 _parser andPTI33 parser arelocated in the
gridpack::parser namespacerheseclas®s have only a fewmportant functions. The first
arethe constructer

PTI23 parser <MyNetwak> (boost::shared_ptr<MyNetwork> network)
PTI33_parser <MyNetwork>boost::shared_ptr<MyNetwork> network)

Theremaining functions are common to both parsers. To read a PSS/E PTI file containing a
network configuration and generate a network, the parserticallmethod

void parse(const std::string &filename)
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where filename refers to the location of the network configuration file. To use this plaeser,
network object witithe appropriatbus and branch classes is instantiated and then passed to the
construodr of thePTI23 parser  or PTI33 parser  object The parse method is then
invoked with thenameof the network configuration filpassed in as an argumenid the

network is filled out with buses and branchBse pararaters in the network configuration file

are stored as keyalue pairs in th®ataCollection object associated with each bus and
branch.Once thenetworkpattition method has been calletie network is flly distributed and

ghost buses and branches have been creatkdr GQperationsperationsanthenbe performed.

A variant on parse is the command

void externalParse(const std::string &filename)

This command can be used to payg files containing dynamic simulation parameters. The
difference between this function apdrse is thatexternal Parse assumes that the network
already exists and that the parameters that are read in will be added to it. This command should
therefore only be called after a network has been createdpasiseg .

Another key part of the parsing capability is thetion ary .hpp file, which is designetb
provide a common nomenclature for parameters associated withr gad componeut This

file is located in therc/parser  directory under the main GridPACK directory. The
definitions in thedictionary.hpp are used to exdctparameters from the

DataCollection objects created by the parser. For example, the parameter describing the
resistance of a transmission element is given the commonBBARCH_RThis string is

defined as a macro in tlactionary.hpp file as

#define " 21 . #(m2 282! . #( m2

The use of a macnarovides compile time error checking on the name. The goal of using the
dictionary is that all parsers will eventually store the branch resistance parameter in the
DataCollection object using this common name. Appglilons can then switch easily
between different network configuration file formats by simply exchanging parsers, which will
all store corresponding parametesing a common naming convention that can used within the
code to access data.

Serial IO Module

Theserial 10 module is designed to provide a simple mechanism for writing information from
selected buses and/or branches to standard autpuile using a consistent ordering scheme.
Individual buses and/or branches implement isewnethod that will wite bus/branch

information to a single string. This information usually consists of bus or branch identifiers plus
some parameters that are desired in the output. The serial IO module then gathers this
information, moves it to the head node, and writesiitin a consistent order. An example of this
type of output is shown below.
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Bus Voltages and Phase Angles

Bus Number  Phase Angle  Voltage Magnitude

1 0.000000 1.060000
2 - 4.982589 1.045000
3 -12.725100 1.010000
4 -10.312901 1.017671
5 - 8.773854 1.019514
6 - 14.220946 1.070000
7 - 13.359627 1.061520
8 - 13.359627 1.090000
9 - 14.938521 1.055932
10 - 15.097288 1.050985
11 - 14.790622 1.056907
12 - 15.075585 1.055189
13 - 15.156276 1.050382
14 - 16.033645 1.035530

Figure 7. Example output from buses in a 14 bus problem.

Note that the output is ordered by bus index (which matches the ordering of thenlibises i
original network configuration file). This ordering would be preserved regardless of the number
of processors used in the calculation.

Like the mapper, the serial 10 classes are relatively easy to use. Most of the complexity is
associated with impleenting theserialWrite methods in the buses and branches. Data can
be written out for buses and/or branches using eithe3¢halBuslO  class or the
SerialBranchlO class. These are again templated classes that take the network as a
argument in the constctor.Both classes reside in tigeggdpack::serial_io namespace.
TheSerialBuslO  constructor has the form

SerialBuslO <MyNetwork>(int max_str_len,
boost::shared_ptr<MyNetwork> network)

The variablemax_str_len is the length, in bytes, of the maximum ssteng you would want

to write out using this class anétwork is a pointer to the network that is used to generate
output.The value of max_str_len is used to allocate internal memory and also determines how
much data needs to be moved around eachdatefrom the entire network is written out. As

the value of this parameter increases, the amount of memory needed and the amount of data that
needs to move increases, so this value should be kept to a minimum, if possible.

Two additional functions can hesed to actually generate output. They are
void header(const char *string) const

and
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void write(const char *signal = NULL)

Theheader method is a convenience function that will only write the buffer string from the

head processor (process 0) and candeelfor creating the headings aboae output listing. The

write  function traverses all the buses in the network and writes out the strings generated by the
serialWrite methods in the buses. TBerialBuslO  object is responsible for reordering

these string in a consistent manner, even if the buses are distributed over many processors. The
optionalv ar i signdl ed0 i s p a sesiadWlitet o methleds and can be used to

control what output is listed. For exalapin one part of a simulatiahmight be degable to list

the voltage magnitude amthase angle from a powerflow calculation and in another part of the
calculation to list the rotor angle for a generator. These two outputs could be distinguished from
each other in theerialWrite function using thesignal  variable.

To generate theutput in Figure 7the following calls are used

gridpack::serial_io::SerialBuslO<MyNetwork> buslO(128,network);
buslO.header(" \n Bus Voltages and Phase Angles \n");
buslO.header(

"\n Bus Number Phase Angle Voltage Magnitude \n");
buslO.write();

The first call creates th@eriallOBus  object and specifies the internal buffers size (128
bytes). This buffer must be large enough to incorporate the output from any call to one of the
serialWrite calls inthe bus cormponents. The next two lines print out the header omtop

the bus listing and the lalshe generates the listing itself. TherialWrite implementation
looks like

bool gridpack::myapp ::MyBus::serialWrite(char *string,
const int bufsize, const char  *signal)

{

double pi = 4.0*atan(1.0);

double angle = p_a*180.0/pi;

sprintf(string, " %6d  %12.6f %12.6f \n",

getOriginallindex(), angle,p_v);

}

For this sinple casesignal is ignored as well as the varialdafsize . If morethan one type

of bus listing was desired, additional conditions based on the vafignal could be

included.For the case of generators, the length of the output may vary from one bus to the next
since buses can have different numbers of generatarsiaes! with them. In this case it may be
important to check the length of the output string being generated against the size of the buffer to
make sure there is no overwrite and to take some kind of appropriate action if there is.

53



If you wish to direct tk output to a file, then calling the function
void open(const char *filename)

will direct all output from the serial 10 object to the file specified in the variable filename.
Similarly, calling the function

void close(void)

will close the file and all sulesjuent writes are directed back to standard output. The same
SerialBuslO  object can be used to write data to npldt different files,as long as the files
are opened and closed sequentidflywo files need to be used at the same time, then two
SerialBu slO objects need to be creatddvo additional methods can be used to further
control where output goes. If a file already exists, you can use the function

boost::shared_ptr<std::ofstream> getStream()

to recover a pointer to the file stream currently beisgd by th&erialBuslO  object. This
can then be used to redirect output from some other part of the code to the same file. The
function

void setStream(boost::shared_ptr<std::ofstream> stream)

can be used to redirect the output from3leeiallOBus  objectto an already existing file. The
main use of these two functions is to direct the output from both buses and branches to the same
file instead of standard output.

The SerialBranchlO module is similar to th8erialBuslO  module but works by creating
listings for branches. The constructor is

SerialBranchlO <MyNetwork>(int max_str_len,
boost::shared_ptr<MyNetwork> network)

and the header and write methods are

void header(const char *string) const

void w rite(const char *signal = NULL)
These have exactly tlsame behavior as in tiserialBuslO  class.Similarly, the methods

void open(const char *filename)

void close(void)

boost::shared_ptr<std::ofstream> getStream()

void setStream(boost::shared_ptr<std::ofstream> stream)
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can be used to redirect output to aifiistead of standard output.

The usual method for directing the output from both a SerialBuslO object and SerialBranchlO
object to the same file is to use the calling sequence

Seri alBuslO<MyNetwork> buslO(max_str_len, network);
SerialBran chlO<MyNetwork> b ranchlO(max_str_len, network);
AOO) /t1 PAT s2&EEI At AAOe
branchlO.setStream(buslO.getStream());

The file can be closeoly calling close from eithésuslO or branchlO .

Configuration Module

The configuration module is designed to provide a central meshdon directing information

from the input file tahe components making up a given application. For example, information
about convergence thresholds and maximum numbers of iterations might need to be picked up by
the solver module from an external confidgiga file. The configuratiomodule is designed to

readfiles using a simple XML format that supports a hierarchical input. This can be used to

control which input gets directed to individual objects in the application, even if the object is a
framework conponent and cannot be modified by the application developer.

The Configuration class is in the namespagedpack::utility . This clasdollows
the C++ singleton pattern addes not have a public constructbhe static method
configuration() returns a paiter to theshared instance of this claasd guaratantees that

the same instance ised by all modules in an applicatidine shared instance can be initialized
with data from an external file using the code

gridpack::utility::Configuration * ¢ =
grid pack::utility::Configuration::configuration() ;
c- >open(input_file, MPI_COMM_WORLD);

The input file uses XMlIsyntax. The singletecp evel el ement must be name
but other elements may have modued applicatiorspecific names. Refer elsbere in this
document fodetaik. For illustratiorpurposesan example configuration file might look like:

<?xml version ="1.0" encoding ="utf -8"?>
<Configuration >
<PowerFlow>
<networkConfiguration =~ > IEEE118raw </networkConfiguration >
</ PowerFlow>
<DynamicSimulation >
<StartTime > 0.0 </StartTime >
<EndTime> 0.1 </EndTime>
<TimeStep> 0.001 </TimeStep>
<Faults >
<Fault >
<StartFault > 0.03 </StartFault >
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<EndFault > 0.06 </EndFault >
<Branch> 37 </Branch>

</ Fault >

<Fault >
<StartFault > 0.07 </StartFault >
<EndFault > 0.06=8 </EndFault >
<Branch> 4 8 </Branch>

</ Fault >

</ Faults >
</ DynamicSimulation >
</ Configuration >

A value in this configuration file is accessed watlall to the overloaded methgdt() . The

following line will return the value of the input file corresponding to the XML field
Anet wor kConfigurationo

std::string s =
c- >get("Configuration.PowerFlow.networkConfiguration”,
"IEEE.raw ");
The firstargument has typ@onfiguration::KeyType which is atypedef of
std::string . Values are selected by hierardéhically
the example input file, fAPower Fl owo is a bl oc

Anet wor kConfiingumuatni, omo bil ®, khe secoddeargum@ém®getwise r F1 o wo
a default value thatis usedilifef i el d correspondi ngThdreoaret he key ¢
overloaded versionsf get() for accessingtandardC++ datatypes:bool , int ,long ,

float ,double ,ComplexType andstd::string . For each type there are two vargnt

For integers these look like

int get( const KeyType &, int default_value) const ;
bool get( const KeyType &, int *) const ;

The first variant takes a key name and a default value &mhseitherthe value in the
configuration file or the default value when none is specified. In the second variant, a Boolean
value is returned indicating whether or tim# value was in the configuration féed the second
argument points tan objecthat is updated with the configuration value when it is present. For
strings, the second argument is passed by reference.

The methodyetCursor(KeyType) returns a pointer to an internal element in the hierarchy.
This fAcur sor 0 ga(u pnethalstasabavenbet the @ames are now relative to the
name of the cursor. Thuse might modify the previous example to:

Configuration::CursorPtr p=
c- >getCursor("Configuration.PowerFlow");

std:: strings=p ->get("networkConfiguration”,
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"IEEEl4.raw ");
An additional use of such cursors is to access lists of values. The method

typedef std::vector< CursorPtr > ChildCursors;

void children(ChildCursors &);

can be used to get a vector of all the elements that are children in the name hierarchy of some
element. Tiese children need not have unique namedlustrated by the children of the
AFaultso el ement shown above. I n this exampl e
to access fAStartFaul to, fAfEonrd Feaauc hu dotfo atbhtleo GiiBAsaa n
Again, returning to the sample input above, the following code will return a list of faults

Configuration::CursorPtr p=

c- >getCursor("Configuration.DynamicSimulation.Faults ")
ChildCursors faults;
p- >children(faults);

The cursor p is set gbat is is pointing at the Faults block in the input. The children function
then picks up all XML blocks one level and returns a list of cursor pointers to those Dlloeks.
individual data elements fiaults  can be accessed using the following loop

I nt nf aults = faults.size()
f or (int i=0; i<nfaults; i++) {

double start = faults][i] - CAO5 23000 Do)
double end = faults[i] - CAOBL & &A 0100 t
std::string indices = faults[i] - CAOs 2" OAllABa4t K2

/I Do something with these parameters

}

Note that this method does not have any way of distinguishing between different blocks below
Faults and if two types of blocks where listed within fhaults  block, thechildren
method would pick up both of them.

Developing Applications

The previous sectiooutlined most of the basic modules in the GridPACK framework. In this
section, we provide an overview of how to use these modules to create actual applications by
discussing the development of a power flow simulation application in dettiial examplesf

a power flow application can be found by lookingaatexample codecated under the tejevel
GridPACK directory in src/applicatiorestamplefpowerflow.Users can also look at the power

flow module located in the src/applications/modules/powerfloectiory. The main difference
between the power flow example code and the power flow module is that the module breaks up
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the power flow calculation into more separate function calls and the module also has options for
using a noflinear solverThe power fbw bus and branch classes are located in the directory
src/applications/components/pf_matrix.

A schematic o power flow code based on GridPACK is shownFigure8. For different

power grid problems, the details of the code will be different, but nidsese motifs will

appear at some point or other. The main differences will probably be in feedback loops as results
from one part of the calculation are flegick into other part$-or examplean iterative solver

will need to update the current valueshaf network components, which can then be used to
generate new matrices and vectors that are fed back into the next iteration of the solver. The
diagramin Figure 8is not complete, but gives an overall view of code structure and data
movement.

Corfigure Import apology A e Instantiate
= parameters from itio
Remmion components

hodule Metwrork netwarkfile
Networkis ready
for computation

Vector Map

Matrix Map

MNonlinear
Solver

Figure 8. Schematic of program flow for a power flow simulation. The yellow ovals are
distributed data objectthe green blocks are GridPAGKamework components and the blue
blocks are application specific code. External files are red.

As shown irthe figure application developers will need to focus on writingp orthreesets of
modules. The first is the network components. These are the descriptions of the physics and/or
measurements that are associated with buses and branches in the power grid network. The
network factory is a moduldat initializesthe grid components on the network after the network
is originaly created by the import module. The power flow problem is simple enough that it can
use a nosinear solver directly from the math module but eaestraightforward solution such as
this requires the developer to overwrite some functions in the factory that are used in the non
linear solver iterations.
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Most of the work involved in creating &w application is centered aneating the bus and
branchclassesThis discussion will describe in some detail the routines that need to be written in
order to develop a workingower flowsimulation.Additional application module®r dynamic
simulation and contingency analysis have also been included irsthbwtion and users are
encouraged to look at thesedulesfor additional codinggexamples on how to use GridPACK

The discussion below is designed to illustrate how to build an application and foy bieevieft

out some codeompared to the working iplementation. The source codentains more

comment lines as well as some additional diagnostics that may not appear here. However, the
overall design is the same and readers who have a good understanding of the following text
should have no difficulty uretstanding the powdiow source code.

For the power flow calculation, the buses and branches will be represented by theP¢&Bsses
andPFBranch . PFBus inherits from theBaseBusComponent class, so it automatically
inherits theBaseComponent andMatVecin terface classes as well. The first thing that
must be done in creatinlje PFBus components to overwrite the load function in the
BaseComponent class. The original function is just a placeholder that perfornaction. The
load function should take pamaeters from th®ataCollection object associated with each
bus and use them to initialize the bus component itself. F&tEB&is component, a simplified
load function is

void gridpack::powerflow::PFBus::load(
const boost::shared_ptr<gridpack::componen t
::DataCollection> &data)

data - >getValue(CASE_SBASE, &p_sbase);
data - >getValue(BUS_VOLTAGE_ANG, &p_angle);
data - >getValue(BUS_VOLTAGE_MAG, &p_voltage);
p_v = p_voltage;
double pi = 4.0*atan(1.0); p_angle = p_angle*pi/180.0;
p_a=p_angle ;
int itype; data - >getValue(BUS_TYPE, &itype);
if (itype == 3) {
setReferenceBus(true);
}
bool Igen;
int i, ngen, gstatus;
double pg, qg;
if (data ->getValue(GENERATOR_NUMBER, &ngen)) {
for (i=0; i<ngen; i++) {
lgen = true;
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lgen = Ilgen && data - >getValue(GENERATOR_PG, &pg,i);
lgen =Igen && data - >getValue(GENERATOR_QG, &qg,i);
lgen = Igen && data - >getValue(GENERATOR_STAT, &gstatus,i);
if (Igen) {
p_pg.push_back(pg);

p_ag.push_back(qg);
p_gstatus.push_back(gstatus);

}
}
}
}

This version of thédoad function has left off additional properties, such as shunts and doalds
some transmission parametdoat it serves to illustrathowload is suppose to work. The

load method inthe base factory class will run over all buses, gebDdtaCollection

object associated with eabhs and theoall thePFBus::load methodusing the
DataCollection object astie argumentThe parametens sbase , p_angle ,

p_voltage are private members &fFBus. The variables corresponding to the keys
CASE_SBASEBUS_VOLTAGE_ANBUS_VOLTAGE_MAgere stored in the

DataCollection object when the network configuration file was parsed. They are retrieved
from this object using thgetValue functions and asgned top_sbase , p_angle ,

p_voltage . Additional internal variables are also assigned in a simiéamrar. The value of
theBUS_TYPEvariable can be used to determine whether the bus is a referenées bus.
mentioned previouslythe CASE_SBASEetc. are just @processor symbols that are defined in
thedictionary.hpp file, which must be included in the file defining lead function.The
dictionary.hpp file can be found in therc/parser  directory of the GridPACK
distribution.

The variables referring to geneset have a different behavior than the other variables. A bus can
have multiple generators and these are stored iDdkeCollection object with an index.
Thetotal number of generatormn the buss also stored in thBataCollection object with

the keyGENERATOR_NUMBHRrst the number of generators is retrieved and then a loop is set
up sothatall the generator variables can be accessed. The generator parameters are stored in
local private arrays. The loop shows how the return value @fét\éalue function can be

used to verify that all tlee parameters for a generata@we f ound. I f they aren
generator is incomplete and the generatooisadded to the local data. Thedbean return value

can also be used to determine if the busatiasr properties and to set internal flags and
parameters accordinglyhe load function for th@FBranch is constructed in a similar way,
except that the focus is on extracting branch related parameters frOatét@ollection

object.
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Both thePFBus andPFBranch classes contain an applicatiepecific function called

setYBus thatis used to set up values in thenétrix. There is also a function in the powerflow
factoty class that runs over all buses and branches and calls this functisetYBeis

function in PFBus is

void gridpack::powerflow::PFBus::setYBus(void)
{
gridpack::ComplexType ret(0.0,0.0);
std::vector<boost::shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);
int size = branches.size();
int i;
for (i=0; i<size; i+ +) {
gridpack::powerflow::PFBranch *branch
= dynamic_cast<gridpack::powerflow::PFBranch*>
(branchesJi].get());
ret -=branch ->getAdmittance();
ret -=branch ->getTransformer(this);
ret += branch - >getShunt(this);
}
if (p_shu nt) {
gridpack::ComplexType shunt(p_shunt_gs,p_shunt_bs);
ret += shunt;
}
p_ybusr = real(ret);
p_ybusi = imag(ret);
}

This function evaluates the contributions to thé&l#trix associated with buses. The real and
imaginary parts of this numbare stored in the internal variablesybusr andp_ybusi . The
subroutine first creates the local variatdé and then gets a list of pointers to neighboring
branches from thBaseBusComponent functiongetNeighborBranches . The function
then loops over ehoof the branches andes the dynamic cast function in C++ to conthest
BaseComponent pointer to @FBranch pointer.Note that the cast is necessary since the
getNeighborBranches function only returns a list daseComponent object pointers.
TheBaseConponent class does not contain applicatigpecific functions such as
getAdmittance . ThegetAdmittance , getTransformer andgetShunt methods
retum the contributions frortransmission elements, transformers and shunts associated with the
branch. These are aamulated into theet variable.
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The reason that thgetAdmittance  variable has no argument while both

getTrans f ormer andgetShunt take the pointefithis ©0as an argument is that the
admittancecontribution from simple transmission elemeistsymmetricwith respect to whether

or not the cal l i n dusdswiilethesransfdrraer dnd shunthecontriloutionsi t o o
are not.This can be seen by examining e Transformer  function.

gridpack::ComplexType
gridpack::powerflow::PFBranch::getTransformer(
gridpack::powerflow::PFBus *bus)
{
gridpack::ComplexType ret(p_resistance,p_reactance);
if (p_xform) {
ret= -1.0/ret;
gridpack::ComplexType a(cos(p_phase_shift),sin(p_phase_shift));
a = p_tap_ratio*a;
if (bus == getBus1().get()) {
ret = ret/(conj(a)*a);
} else if (bus == getBus2().get()) {
/I ret is unchanged
}
} else {
ret = gridpack::ComplexType(0.0,0.0);
}

return ret;

}

The variablep_resistance , p_reactance ,p_phase_shift , andp_tap_ratio are
all internal variables that are set basedmmvariables read in from using tlead method or
are set in other initialization steps. The boolean varjbkform variable is set to true in the
PFBranch::load  method if transformerelated variables are deted in the

DataCollection objects associated with the branctheywise it is false.

ThePFBranch version of thesetYBus function is

void gridpack::powerflow::PFBranch::setYBus(void)
{
gridpack::ComplexType ret(p_resistance,p_reactance);
ret= -1.0/ret ;
gridpack::ComplexType a(cos(p_phase_shift),sin(p_phase_shift));
a = p_tap_ratio*a;
if (p_xform) {
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p_ybusr_frwd = real(ret/conj(a));
p_ybusi_frwd = imag(ret/conj(a));
p_ybusr_rvrs = real(ret/a);
p_ybusi_rvrs = imag(ret/a);
} else {
p_ybusr_frwd = real(ret);
p_ybusi_frwd = imag(ret);
p_ybusr_rvrs = real(ret);
p_ybusi_rvrs = imag(ret);
}
gridpack::powerflow::PFBus *busl =
dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get());
gridpack::powerflow::PFBus * bus2 =
dynamic_cast<gridpack::power  flow::PFBus*>(getBus2().get());
p_theta = (busl ->getPhase() - bus2->getPhase());
}

Note that the branch version of thetYBus function calculates different values for the Y
matrix contribution depending on whethbe first index in thé/-matrix element corresponds to
bus 1 (the forward direction) or bus 2 (the reverse directidr@se are stoddn the separate
variablesp_ybusr_frwd andp_ybusi_frwd  for the forward directions and

p_ybusr_rvrs  andp_ybusi_rvrs  for the reverse direction. This routine also calculates
the variablg_theta which is equal to the differende the phase angle variable associated
with the two buses at either end of thranch. This last variable provides an example of
calculating a brancharameter based on the values of parameters located enrttiealbuses

ThesetYBus functionsdescribed abovare used in the pow#ow components to set some

basic parameters. These are eventually incorporated into the Jacobian matrix and P@atector t
constitute the matrix and right hand side vector of the pflasrequations. To build the matrix,

it is necessary to implement the matrix size and matrix values functions in the
MatVecinterface . The functions for setting up the matrix are discusseltail in the

following, the vector functions are simpler but follow the same pattern. The mode used for
setting up t heJacbkdan oob. i aTnh emactomatrkeDsagSizefd iroutine

is

bool gridpack::powerflow::PFBus :matrixDiagSize(int *isize,
int *jsize) const
{
if (p_mode == Jacobian) {
*isize = 2,
*|size = 2;
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return true;
} else if (p_mode == YBus) {

*isize = 1,
*isize = 1,
return true;

}
}

This function handles two modes, stored in the internal varmabtede . If the mode equals

Jacobian , then the function returns a contribution to a 2x2 malmixhe case that the mode is

fiYBuso t he function would return a contribution
real matrix where the real and complets of the problem are treated as separate variables, the

Y -matrix is handle as a regular complex matrix). The corresponding code for returning the
diagonal values is

bool gridpack::powerflow::PFBus::matrixDiagValues(ComplexType *values)
{
if (p_mode == YBus) {
gridpack::ComplexType ret(p_ybusr,p_ybusi);
values[0] = ret;
return true;
} else if (p_mode == Jacobian) {
if (lgetReferenceBus()) {

values[0]= -p_Qinj - p_ybusi*p v*p v;
values[1] = p_Pinj - p_ybusr*p v*p v;
values[2] = p_Pinj/p_v + p_ybusr * p_v;
values[3] =p_Qinj/p_v - p_ybusi* p_v;
if (p_isPV) {

values[1] = 0.0;
values[2] = 0.0;
values[3] = 1.0;
}
return true;
} else {
values[0] = 1.0;
values[1] = 0.0;
values[2] = 0.0;
values[3] = 1.0;
return true;
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}
}

In this implementation, the return values are of {@penplexType , even if they are real. For

real values, the complex partis setto zer6. t h e YBuedd,e tilse Aif uncti on ret
compl ex val ueldacodiah ot,h & hneo deunicst ifon checks first
reference bus or not. If the bus is not a reference bus, then the function returns a 2x2 block
corresponding to the contributiorsthe Jacobian matrix coming from a bus element. If the bus

is a reference bus, the function returns a 2x2 identity matrix. This is a result of the fact that the
variables associated with a reference bus are fixed. In fact, the variables contributed by the

reference bus could be eliminated from the matrix entirely by returning false if the mode is

fJacobian 0 and the bus is a reference bus for bot
This would also require some adjustments to theliaffjonal routies as wellThere is an
additional condition for the case whérehn e bus i s a APVO bus. I n t hi

variables is eliminated by setting the-dfigonal elements of the block to zero and the second
diagonal element equal to The vales are returned in colurmajor order, svalue s[0O]
corresponds to the (0,0) location in the 2x2 bloehye s[1] is the (1,0) location,

value s[2] isthe (0,1)location andralue s[3] is the (1,1) location.

ThematrixForwardSize andmatrixForwardValues routines, as well as the
corresponding Reverse routines, are implemented iRFBzanch class. These functions
determine the oftliagonal blocks of the Jacobian andratrix. ThematrixForwardSize
routine is given by

bool gridpack::powerflow::PFBranch matri xForwardSize(int *isize,
int *jsize) const
{
if (p_mode == Jacobian) {
gridpack::powerflow::PFBus *busl
= dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get());
gridpack::powerflow::PFBus *bus2
= dynamic_cast<gridpack::power flow::PFBus*>(getBus2().get());
bool ok =!busl ->getReferenceBus();
ok = ok && 'hus2 - >getReferenceBus();

if (0k) {
*isize = 2;
*|size = 2;
return true;
} else {
return false
}
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} else if (p_mode == YBus) {

*isize = 1;
*isize = 1,
return true;
}
}

| f t he YBusid,e titse fisi ze f unct i on-diageralumatrixdblock. 11 1 bl
For the Jacobian, thfsinction first checks to see if either end of the branch is a reference bus by
evaluat ng t he Bool ean variable fioko. I f neither
a 2x2 block, if one end is the reference bus then the function returns false. The false value

indicates that this branch does not contribute to the matrix. Rosykiem, the

matrixReverseSize function is the samé-or applications that return a nequare block,

the reverse function will transpose the block dimensions relative to the forward direction.

ThematrixForwardValues function is

bool gridpack::powerflow: :PFBranch::matrixForwardValues(
ComplexType *values)
{
if (p_mode == Jacobian) {
gridpack::powerflow::PFBus *busl
= dynamic_cast<gridpack::powerflow::PFBus*>(getBus1().get());
gridpack::powerflow::PFBus *bus2
= dynamic_cast<gridpac  k::powerflow::PFBus*>(getBus2().get());
bool ok =!busl - >getReferenceBus();
ok = ok && 'bus2 - >getReferenceBus();
if (ok) {
double cs = cos(p_theta);
double sn = sin(p_theta);
values[0] = (p_ybusr_frwd*sn - p_ybusi_frwd*cs);
values[1] = (p_ybusr_frwd*cs + p_ybusi_frwd*sn);
values[2] = (p_ybusr_frwd*cs + p_ybusi_frwd*sn);

values[3] = (p_ybusr_frwd*sn - p_ybusi_frwd*cs);
values[0] *= ((busl - >getVoltage())*(bus2 - >getVoltage()));
values[1] *= - ((busl ->getVoltage())*(bus2 - >getVoltage()));

values[2] *= busl - >getVoltage();
values[3] *= busl - >getVoltage();
bool bus1PV = busl ->isPV();

bool bus2PV = bus2 ->isPV();

if (bus1PV & bus2PV) {
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}

For

values[1] = 0.0;
values[2] =  0.0;
values[3] = 0.0;

} else if (bus1PV) {
values[1] = 0.0;
values[3] = 0.0;

} else if (bus2PV) {
values[2] = 0.0;
values[3] = 0.0;

}

return true;

} else {
return false;

}

} el seif (p_mode == YBus) {

values[0] = gridpack::ComplexType(p_ybusr_frwd,p_ybusi_frwd);

return true;

}

YiBhsé mode,

t he

functi on
t h &acobian o mode, the function first determes if either end of the branch is connected to
the reference bus. If it,ithen thefunction returns false and there is no contribution to the
Jacobian. If neither end of the branch is the reference bus then the function evaluates the 4
elements of the»2 contribution to the Jacobian comg from the branch. @ do this, the branch

simply

needs to get the current values of the voltages onueskat either eray using the

getVoltage

equations. This can be done by setapgropriatevalues in the 2x2 block equal to zero.

ThematrixReverseValues

function is similar to thenatrixForwardValues
with a few key differences. 1) the variabfes/busr_rvrs
instead ofp_ybusr_frwd
sin(p_theta)

andp_ybusi_frwd
the function usesos( - p_theta)

andsin( - p_theta)

andp_ybusi_rvrs
2) instead of usingos(p_theta)

are used
and
sincep_theta

rmattixu fom s

accessor functions that have been defined ifPHus class. Finally, if onend
or the other of the branch is a PV bus, then some variables need to be eliminated from the

functions

t

he

is defned as difference in phase angle on bus 1 minus the difference in phase angle on bus 2 and
3) the values that are set to zero in the conditions for PV buses are transposed. The PV

conditions are the sanas the forward caséboth bus 1 and bus 2 are Pudes, if only bus 1 is
a PV bus thenalues|[2]
values[1]

andvalues|3]

andvalues|3]

are zero.

are zero and if only bus2 is a PV bus then
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The functions for setting up vectors are similar to the corresponding matrix functions, although
they are a bit simpte The vector part of th®latVecinterface contains one function that

does not have a counterpart in the set of matrix functions and thasetWadues function.

This function can be used to push values in a vector object back into the buses thatavare us
generate the vector. For the Newd@aphsormethodused to solve the pow#low equationsit

is necessaryat each iteratiorntp push the current solution back into the buses so they can be
used to evaluate new Jacobian and right hand side vetharsolution vector contains the
currentincrements to the voltage and phase angle. Téreseritten back to the buses using the
function

void gridpack::powerflow::PFBus::setValues(
gridpack::ComplexType *values)

p_a - =real(values[0]);
p_v -=r eal(values[l1]);
*p_VANg_ptr =p_a;
*p_vMag_ptr=p_v;

}

This function is paired with a mapper that is used to create a vector with the same pattern of
contributions. If for example, the matrix equatéx=b is being solved, then the mapper used

to create the right hand side vectbshould be used to push results back onto the buses using the
mapToBus method. ThesetValues method above takes the contributions from the solution
vector and uses then to decrement the internal varipbegvoltage angleandp_v (voltage
magnitude). The new valuespfa andp_v are then assigned to the bufferssAng_ptr and
p_vMag_ptr so that they can be exchanged with other buses. This is discussed below.

The two routines that need to be created irPfRBuUS class tocopy data to ghost buses are both
simple. There is no need to create corresponding routines RFBranch class since branches
do not exchange datathe power flow calculatianfwo values need to be exchanged between
buses, the current voltage angle &me current voltage magnitude. This requires a buffer that is
the size of two doubles so thetXCBufSize function is written as

int gridpack::powerflow::PFBus::getXCBufSize(void)
{

return 2*sizeof(double);

}

ThesetXCB uf assigns the buffer createdthre basefactorysetExchange function to
internal variables used within tiR~Bus component. It has the form

void gridpack::powerflow::PFBus::setXCBuf(void *buf)
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p_VAng_ptr = static_cast<double*>(buf);
p_vMag ptr = p_VAng_ptr+1;
*p_VANg_ptr =p_a;
*p_vMag _ptr=p_v;

}

The buffer created ithesetExchange routine is split between the two internal pointers
p_VvAng ptr andp_vMag_ptr . These are then initialized to the current valugs af and
p_v. Whenever thepdateBuses routineis called the buffersontheghost buses are
refreshedwvith the current values of thariables from the processes thain the corresponding
buses. Note that both tigetXCBufSize and thesetXCBuf routines arenly called during
thesetExchange routine They are not calleduring the actudbus updates.

One final function in th&®FBus andPFBranch class that is worth taking a brief look at is the

set mode function. This function is used to set the intgrmalode variable that is defined in

both classes. THeBFModeenumerdat on, whi ¢ h ¢ ¥Busoa iadexbbidio bh t he A
modesis defined within the gridpack::powerflow namespddee setMode function for both

buses and branches has the form

void gridpack::powerflow::PFBus::setMode(int mode)

{

p_mode = mode;

}

This functbn is triggered on all busesd branches if theetMode methodin the factory class
is called.

Once thePFBus andPFBranch classes have been defined, it is possible o da
PFNetwork usingatypdef statementThis can be dne using the line

typedef ne twork::BaseNetwork<PFBus, PFBranch > PFNetwork;

in the header file declaring tf#-Bus andPFBranch classes. Thisype can then be uséd
other poweflow files that need to creatibjects from templatedasses.

The discussion abovswimmarizes many of theportant functions in theFBus and

PFBranch clas®s. Additional functions are included in these classes that are not discussed
here, but the basic princigénvolved in implementing the remaining functidres/e been
covered.

The first part of creating new application is writing the network componelasses. The second
part isimplementinghe applicatiorspecific factory. For the powdow application, this is the
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PFFactory class, which inherits from tr@aseFactory class. Most of th important
functionality in PFFactory is derived from thé&aseFactory class and is used without
modification, but several applicatieapecific functions have been addedPteFactory that are
used to set internal parameters in the network components. As an exampberdbesi
setYBus function

void gridpack::powerflow::PFFactory::setYBus(void)
{
int numBus = p_network - >numBuses();
int numBranch = p_network - >numBranches();
int i;
for (i=0; iknumBuUsS; i++) {
p_network - >getBus(i).get() - >setYBus();

}
for (i=0; i<numBranch; i++) {

p_network - >getBranch(i).get( ) - >setYBus();
}

}

This function loops over all buses and branches and invokset¥iBus method in the

individual PFBus andPFBranch objects The first two linesn the factorysetYBus method
getthetotal number of buses and branches on the process. A loop over all buses on the process is
initiated and a pointer to the bus object is obtained vigetiBus bus method in the

BaseNetwork class This pointer is returned as a pointer of t{g#Bus, so itis not necessary

to do a dynamic cast on it and tetYBus method, which is not part of the base class, can be
invoked The same set of stepgien repeated for the branch&kefactory can be used to

create other methods that invoke functions on basdfr branchedJost of these functions

follow the same general form as #etYBus method just described.

The last part of building an application is creating the top level application driver that actually
instantiates all the objects used in tadcultionand controls the program flow. Running the

code is broken up into two parts. The first is creating a main program and the second is creating
the application driver. The main routine is prirharesponsible for initializinghe

communication librarig and creating the application object, the application object then controls
the application itself. The main program for the powerflow application is

main(int argc, char **argv)

{

gridpack::parallel::Environment env(argc,argv);
gridpack::math::Initiali ze();

70



gridpack::powerflow::PFApp app;
app.execute();

gridpack::math::Finalize();
}

Thefirst line in this program creat@svariable of typé&nvironment thatinitializes theMPI

and GAcommunication librarie@he initialization happens in the censctor, so all that is
necessary is to create the variable). The second line initializes the math drety, in turn,

calls the initialization routines of whatever library the math module is built on. The code then
instantiates a powdlow applicaton object and calthe execute method for this object. The
remainder of the powdlow application is contained in tHeFApp::execute  method.

Finally, when the application has finished running, the main program cleans up the
communication and math libras. The communication libraries are handled whenetine

variable goes out of scope and callsEm¥ironment  destructorThe main reason for

breaking the code up in this way instead of including the execute function as parhois to
force the invocabn of allthe destructors in the GridPAGHbjects used to implement the
application. Otherwise, thesestructors get called after the communication libraries have been
finalizedand the program will fail to exit cleanly.

The top level control of the apghtion is embeddenh the power flonexecute method The
execute method starts off with the code

gridpack::parallel::Communicator world,;
boost::shared_ptr<PFNetwork> network(new PFNetwork(world));

gridpack::utility::Configuration *config

= gr idpack::utility::Configuration::configuration();
config - >open("input.xml",world);
gridpack::utility::Configuration::Cursor *cursor;

cursor = config - >getCursor("Configuration.Powerflow");

std::string filename :

if ! cursor ->get("networkConfiguratio n", &filename)) {
printf(  "No network configuration specified \n");
return;

}

gridpack::parser::PTI23_parser<PFNetwork> parser(network);
parser.parse(filename.c_str());

network - >partition();
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The first two lines create a communicator fas thpplicationand use it to instantiate a

PFNetwork object (note that this is reallyBaseNetwork templateclass that is instantiated
using thePFBus andPFBranch classess template arguments he network object existaut

has no buses or branches assed withit. The next few lines get an instance of the
configuration object and use this to openitiput.xml  file. This filename has been

hardwired into this implementation but it could be passed in as a runtime argument, if desired.
The code then cagdes aCursor object and initializes this to point into the
Configuration.Powerflow block of theinput.xml  file. The cursor can then be used to
get the contents of theetworkConfiguration block ininput.xml | which corresponds

to the name of the network mioguration file containing the poweyrid network.This file is
assumed to use the PSS/E version 23 forAfedr getting the file name, the code creates a

PTI23 parser object and passes in the current network object as an argument. When the
parse methot called, the parser reads in the file specifieflémame and uses that to add
buses and branches to the network object. At this point, the network has all the bus and branches
from the configuration file, but no ghost buses or branelkest andbusesand branches are not
distributed in an optimal way. Cadb the partition methodn the network then distributése

buses and branches and adds appatgppghost buses and branches.

The next set of calls initialize the network components and prepanetierk for computation.

gridpack::powerflow::PFFactory factory(network);
factory.load();

factory.setComponents();
factory.setExchange();

network - >initBusUpdate();

factory.setYBus();

The first call creates AFFactory objectand instantiasit with a reference to the current
network.PFFactory is defined as an instance of tBaseFactory class using a

PFNetwork as the template argumeifitie next line calls thBaseFactory load method
which invokes theomponentoad method on all buses amdanches. These use data from the
DataCollection objects to initialize the corresponding bus and branch objects. Note that
when the partition function creates the ghost bus and branch objects, it copies the associated
DataCollection objectsto these ghostso theparameterérom the network configuration

file are available to instantiate all objects in the netw®hlere is no need to do a data exchange
at this point in the code in order to get current values on the ghost objects.
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The next two call are ado implemented aBaseFactory methods. TheetComponents

method sets up pointers in the network components that point to neighboring branches and buses
(in the case of buses) and terminal buses (in the case of braticisesso responsible for

settingup internal indices that are used by the mapper functions to create matrices and vectors.
ThesetExchange methodsetsup the buffers that are used to exchange data betaesty
ownedbuses and branches and their corresponding ghost images on othssgotke call to
initBusUpdate creates internal data structures that are used to exchange bus data between
processors andhé final factory call tsetYBus evaluates the ¥natrix contributions from all

network components. The network is fully initializaithis point and ready for computation.

The nextcalls create the ¥natrix andthe matrices used in the NewtBaphson iteration loop.

factory.setMode(YBuSs);
gridpack::mapper::FullMatrixMap<PFNetwork> mMap(network);
boost::shared_ptr<gridpack::math . Matrix> Y = mMap.mapToMatrix();

factory.setSBus();

factory.setMode(RHS);

gridpack::mapper::BusVectorMap<PFNetwork> vMap(network);
boost::shared_ptr<gridpack::math::Vector> PQ = vMap.mapToVector();

factory.setMode(Jacobian);

gridpack::mapper ::FullMatrixMap<PFNetwork> jMap(network);
boost::shared_ptr<gridpack::math::Matrix> J = j[Map.mapToMatrix();
boost::shared_ptr<gridpack::math::Vector> X(PQ - >clone());

The first call sets the internalyBugoTimode vari a
second call constructsrallMatrixMap  objectmMapand the third callises the

mapToMatrix method to generateaMat r i x baYBesd madéheThe factor
calls thesetSBus method that sets some additional network component parameters kggain,

looping over all buses and invokingetSBus method on each bus). The next three lines set

t he moRH®, create BisVectorMap object and create the right hand side vector in the
powerflow equations using tmeapToVector method. This builds the etor based on the

ARHS mode. henext three lines create the Jacobian using the same pattern as femttaxy

The mode Jaeobian & et a fraiMafiigMap object is created and this is used

to create the Jacobian using thapToMatrix method Two separate mappers are used to

create the Ymatrix and the Jacobian. Thisrequiredunless there is some reason to believe that

t h¥Busd aJdacbbidn 0 modes ¢ e nwith the samerdisménsions aagacty

thesame fill pattern. This is ngienerally the casspdifferent mappers should be created for
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each matrix in the problem. The last line creates a new vector by cloning the PQ vector. The X
vector has the same dimension and data layout as PQ so it could be usedwiithpiobject.

Oncethe vectors and matrices for the problem have been created and set to their initiaitvalues
is possible totart the NewtorRaphson iterations. The code to set up the first Newiphson
iteration is

double tolerance =1.0e -6;

int max_iteration = 100;

ComplexType tol;
gridpack::math::LinearSolver solver(*J);

solver.configure(cursor);
int iter = 0;

X->zero();
solver.solve(*PQ, *X);
tol = PQ ->norminfinity  ();

The first three lines define some parameters used in the N&efoinson lop. The tolerance

and maximum number of iterations are hardwired in this example but could be made
configurable via the input dealsing theConfiguration class The next line creates a linear
solver based on the current value of the JacoBianhe call b the configure method allows
configuration parameters in the input file to be passed directly to the newly created solver. The
iteration counter is set to zero and the valuX sfalso set to zero. The linear solver is called

with PQas the right handde vector an as the solution. An initial value of the tolerance is set
by evalating theinfinity norm of PQ The calculation can now enter the Newiaphson

iteration loop

while (real(tol) > tolerance && iter < max_iteration) {
factory.setMode( RHS);
vMap.mapToBus(X);
network - >updateBuses();

vMap.mapToVector(PQ);
factory.setMode(Jacobian);

jMap.mapToMatrix(J);

X->zero();
solver.solve(*PQ, *X);
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tol = PQ ->norminfinity  ();
iter++;

}

This code starts by pushitige values of the solution vector back on to the buses using the same
mapper that was used to creRB@ The network then calls thgpdateBus routine so that the

ghaost buses haveew valueof thevoltage angle and magnitugarameters from the solution

vector. New values of the Jacobian and right hand side vector are created based on the solution
values from the previous iteration. Note that sih@dPQalready exist, the mappers are just
overwriting the old values insteadl creating new data objeciBhe linear solver is already

pointing to thelacobian matriso it automatically uses the new Jacobian values when
calculatingthe solution vectok. If the norm of the newQvector is still larger than the

tolerance, théoop goes through another iterat This continues until the tolerance condition is
satisfied othe number of iterations reaches the valumax_iteration

If the NewtonRaphson loop converges, then the calculation is essentially done. The last part of
the calculation is to write oulé results. This can be accomplished using the code

gridpack::serial_io:: SerialBus 10<PFNetwork> bus 10(128,network);
buslO.header(" \n Bus Voltages and Phase Angles \n");
buslO.header(" \'n Bus Number  Phase Angle" );

buslO.header( "  Voltage Magnitude \ n");

buslO.write();

The first line creates a serial bus IO object that assumes that no line of output will exceed more
than 128 characters. The next three lines write out the header for the output data and the last line
writes a listing of dat&rom all busesThe data from each bus is generated by the

serialWrite method defined in thBFBus class.A similar set of calls can be used to write

out data from the branchekhis completes the execute method and the overview of the power

flow applicaton.

Advanced Functionality

The core perations supported by GridPAGtave been described above and these can be used
in to create many different kinds of power grid applicatiditgs section will desribe features

that are more advancédt can be extrealy useful in certain caseAdditional capabilities of

the GridPACKframework include

1 Communicators and task managers that can be used to create multiple levels of
parallelism and implement dynamic load balancing schemes

1 A generalized matrivector interfice to handle applications where the dependent and
independent variables are associated with both buses and branches. The
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MatVecinterface described above can only be used for systems where the
dependent anthdependent variables aassociatedolely withbuses

T A f sl abwectomatdrface for creating matrices based on multiple values on each
of the network components. This can be used for algorithms such as Kalman filter

1 Profiling and error handling capabilities

1 A hashed data distribution capabilityat can be used to direct network data to the
processors that own the corresponding network components

This functionality is described in more detail in the following sections.

Communicators

The subject of communicators has already been mentioned iarntextof the constructor for
theBaseNetwork class. This section will describe communicators in more datdilwill

show how the GridPACKommunicatos can be used to partition a large calculation into

separate pieces that all run concurremilzommuncator can crudely be though of as a

communication link between a group of processors. Whenever a process needs to communicate
with another process it needs to specify the communicator over which that communication will

occur. When a parallel jobisstarted i t creates a fAworl do communi c
implicitly belong. Any process can communicate with any other process via the world

communicator. Other communicators can be created by an application and it is possible for a
process to belong tmultiple mmunicators. The concept of communicators is particularly

i mportant for restricting the scope of figloba
process in the communicator to participate. Failure of a process to participatepetagon

usually results in the calculation stalling because multiple processors are waiting for a
communication from a process that ig part of the global operation. A program can remain in

this state indefinitely. Many of thmodulefunctionsin GridPACK represent global operations

and contain imbedded calls that act collectively on a communicator. Inforden separate

calculations to proceed concurrently, they must be run on disjoint sets of processors using

separate communicators.

The use of canmunicators to create multiple concurrent parallel tagiksn an application is
usuallystraightforward to implement but it is frequently munbre confusing to understand. A
diagram of a set of 16 processes that are divideddigtoups each containidgprocesses is
shown schematically in Figuge In this example, each subgroup could potentially execute a
separate parallel task within the larger parallel calculation.
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World communicator
Task communicators

Figure 9. Schematic diagram illustrating the use of multiple communicators

Global erations on the world communicator involve all 16 processes, global operations on one

of the task communicators just involve the 4 processtige group used to define tteesk

communicator. If a network object is created on one of the task communitagors global

operation such as the bus update only occurs between the 4 processes in the task communicator.
The network object is, in a certain sense, fli
If a network is created on a sabmmunicatorthen all objects derived from the network, such

as factories, parsers, serial 10 objects, etc. are also associated with the saamrsuhicator.

The communicatosupports sombasic operations that are commonly useparallel
programming. GridPACKiasbeen designed to minimize the amount of explicit communication
that must be handled by application developersitlsibccasionally useful to have access to
standard communication protocols in applications. In particular, it is useful to be abledi® alivi
given communicator into a set of nomerlapping suitommunicators. The basic operations
supported by the GridPACK communicator class are described below.

The GridPACKCommunicator classis in thegridpack::parallel namespacelhe
constructor for thiglass creates a copy of the world communicator. The constructor has the form

Communicator(void)

and takes no argumeniayo basic functions associated with communicators are
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int size(void) const
and
int rank(void) const

The first function returns the numbof processors in the communicator and the second returns

the index of the processor within the communicator. If the communicator contains N processes,
then the rank will be an integer ranging from 0 td. NI'he process corresponding to rank O is

often eferred to as the head process or head fusdbe communicator. Note that if a process
belongs to more than one communicator, its rank may differ depending on whictunarator

is being referred tdnformationon size and rank is used extensively whgplicitly

programming in parél. GridPACKhas tried to abstract much of this programming so that
developers do not need to pay attention to it, but it is still occasionally useful to be able to access
these numbers. For example, the header functidreisériallO classes is essentially equivalent

to the following code fragment

Communicator comm;
char buf[128];
sprint(buf, 2My message ne & K
I f (comm.rank() == 0) {
pOET O&s 21 02t AOAS K

}
This code createsome output. If the conditiomas not there, the coaeould print out the
message from all N processors in the world co

appearm the output. The conditiamstricting the print statement to process 0 guarantees that the
message appears only once.

A more importantise of communicators is to divide up the world communicator into separate
communicators that can be used to run independent parallel calculations.Krtas/n as multi
level parallelismTwo functions can be used to split up an existing communicatositg
communicators. The first &plit

Communicator split(int color) const

This function divides the calling communicator into gmmunicators based on toelor

variable. All processors with the same value ofdbler variable end up in the same
communicator. Thus, if 16 processars the world communicat@re divided up such that
processes-3 are color 0, process4-7 are color 1, processesl& are color 2 and processes 12

15 are color 3then split will generate 4 sutbommunicatorgrom the worldcommunicator such

that 03 are on one communicator,74are on another communicator and soNwte that this
function divides the communicator completely into complementary pieces with all processes in
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the old communicator ending up in a new communicatok no process ending up in more than
one new communicator.

A second function that can be used to decompose a communicator ktonsoriunicators is
divide . Thisfunction has the form

Communicator divide(int nsize) const

Each subcommunicator returned Hizis function contains at mossize processes. The

function will try and create as many communicators of s&ee as possible. For example, if

the calling communicator contains 10 processesaim® is set to 4, then this function will

create 3 suiommunicators, two of which contain 4 processors and one containing 2 processors.

An example of how communicators can be used to create multiple levels of parallelism is
illustrated in Figurel0. The example has 8 tasks that can be evaluated independeetfirsTh

row in Figurel0 shows four processors. Two of the 8 tasks are run on each processor so if each
task has been parallelized then it needs to run on a communicator with only 1 processor in it. The
second row shows the same calculation running o@&psors. In this case, each processor

only has 1 task associated with it but each task is still running on a single processor. If the tasks
have not been parallelized, then this is as far as you can go. However, if tHeatastdesen
parallelized, thengu can move on to the configuration shown in the third line using 16
processors. In this case, the systhas been divided into 8 graygach containing two

processors. Eadrouphas its own separate subcommunicator and each task can be run in
parallel o two processors. This gives additional spepaver what can be achieved by simply
distributing tasks to separate processors.
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Figure 10. Schematic diagram of 8 tasks evaluated using multiple levels of parallelism. The first
row represents tasks on 4 processors, the second row is 8 tasks on 8 processors and the third
row is 8 tasks running on 16 processors.

Additional functions are available for communicators that support basic parallel computing tasks.
The objective of GridPACK is to abatit most aspects of parallel computing so that users do not
need to deal with them directly, but there are some tasks, particularly those associated with
collecting and organizing data, that are not difficult to program but are difficult to generalize.
Sone support for simple parallel operations is useful in these cases. The following operations
can be used to sum data across all processors

void sum(float *x, int nvals) const

void sum(double *x, int nvals) const

void sum(int *x, int nvals) const

void sum(lo ng *x, int nvals) const

void sum(ComplexType *x, int nvals) const

The arrayx holds the values to be summed avdls is the number of values i This

operation can be used to compute the total of some quantity after partial sums have been
calculated oreach processor. It can also be used to collect an array of values across a collection
of processorby having each processor compute a portion of an array and then using the sum
operation to create a complete copy of the array on all processors.

Maximum ard minimum values can be calculated using the functions

void max(float *x, int nvals) const
void max(double *x, int nvals) const
void max(int *x, int nvals) const
void max(long *x, int nvals) const

void min(float *x, int nvals) const

void min(double *x, in t nvals) const
void min(int *x, int nvals) const

void min(long *x, int nvals) const

Again, a global maximum or minimum can be calculated by first computing the local maximum
or minim on each processor and then evaluating it across processors.

One other conmon parallel construct that may be useful in some contexts is the barrier or
synchronization function. In GridPACK, this is available as the function

void s ync( ) const
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Thesync function does not allow any processor in the communicator to proceed beignd th
call until all processors in the communicator have redtfe call. This is used in some parallel
programming situations to guarantee a consistentatabss all processor$n generalthere
should be relatively little need for this call in GridPRCSee, however, the comment below at
the end of the section @lobalStore

Task Manager

The task manager functionality is designed to parcel out tasks on a first come, first serve basis to
processes in a parallel application. Each processor can reqasktiB from the task manager

and based on the value it receives, it will execute a block of work corresponding to the ID. The
task manager guarantees that all IDs are sent out once and only once. The unique feature of the
task manager is that if the tastake unequal amounts of time, then processes with longer tasks
will make fewer requests to the task manager than processes that have relatively short tasks. This
leads to an automatic dynamic load balancing of the application that can substantiaNggimpro
performance. The task manager also sugpoulti-level parallelism and can be used in

conjunction with the sulbommunicators described above to implement paralle$ tagkin a

parallel application. An example of the use of communicators and taskyerara create a code

that uses multiple levels of parallelism can be found in the contingency analysis applicati

is part of the GridPACKilistribution.

Task managers use tgadpack::parallel namespacelask managers can be created
either on the widd communicator or on a subcommunicator. Two constructors are available.

TaskManager(void)

TaskManager(Communicator comm)

The first constructor must be called on all processors in the sgstg@mreates a task manager on

the world communicatothe secod is called on all processors within the communicetonm

Once the task manager has been created, the number of tasks must be set. This can be done with
the function

void set(int ntask)

where the variablatask corresponds to thetal number of tasks tbe performedThis call is
collective on all processes in the communicator and each process must use the same value of
ntask . The task IDs returned by the task manager will range frorméask -1.

Once the task manager has been cretdskIDs can beeatrieved from the task manager using
one of the functions

bool nextTask(int *next)
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bool nextTask(Communicator &comm, int *next)

The first function is called on a single processor and returns the task ID in the vagieble
The second is called on thenamunicatocommby all processors inommand returns the same
tak ID on all processors (note thaall processors ikommecalled the firsnextTask

function each processan commwould end up with a different task ID)he communicator
argument in tB seconahextTask call should be a subcommunicator relative to the
communicator that was used to create the task mariabrfunctions return truié the task
manager has not run out of tasks, otherwise they return false and the vadue o$ set to-1.

The task manager also has a function
void printStats(void)

that can be used to print out information to standard out about how many tasks were assigned to
each process.

A simple code fragment shows how communicators and task nrar@gebe combined to
create arapplication exhibiting multlevel parallelism.

gridpack::parallel::Communicator world

int grp_size = 4;

gridpack::parallel::Communicator task_comm = world.divide(grp_size);

App app(task_comm);

gridpack::parallel::TaskManager taskmgr;

taskmgr.set(ntasks);

int task_id;

while(taskmgr.nextTask(task_comm, &task_id) {
app.execute(task_data[task_id]);

}

This code divides the world communicator into-s@mmunicators awtaining at most 4

processes. An application is created on ¢éask communicator and a task manager is created on
the world group. The task manager is set to exetatks tasks and a while loop is created to
execute each task. Each calhextTask returns the same valuetafsk_id to the processors

in task_comm . This ID is used to index into an arrtask_data of data structurethat

containthe input data necessary to execute the task. The dgiaskoflata correspondto the

value ofntasks . When the task manager runs out of tasks, the loop terminates. Notesthat t
structure does not guarantee that tasks are mapped to processors in any fixed order. There is no
guarantee that task 0 is executed on process 0 or that some process will execute a given number
of tasks. If one task takes significantly longer than otss then it is likely that other

processors will pick up work from the processors executing the longer task. This balances the
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workload if each process is involved in multiple tasks. Once the workload drops to 1 task per
process, this advantage is lost.

Timers

Profiling applications is an important part of characterizing performance, identifying bottlenecks
and proposing remedies. Profiling in a parallel context is also extremely. tdokwlanced

applications can lead to incorrect cargbns about pesrmance wheitoad imbalance in one

part of the application appears as poor performance in another part of the application. This

occurs because the part of the application that appears slow has a global operation that acts as an
accumulation point for loamnbalance. Nevertheless, the first step in analyzing performance is to

be able to time diffemt parts of the code. GridPAG¥ovides a timer functionalityhait can help

users do this. Theseodules aredesigned to do relatdly coarsegrained profilingtheyshould

not be used to time the inside of computationally intensivesloop

GridPACK contains two different types of timers. The first is a global timer that can be used
anywhere irthecode and accumulates all results back to the same place for ¢despiey.
Users can get a copy of thimer from any point in the calculatioithe second timer is created
locally and is designed to only time portions of the code.sBEeend class of timers wareated

to support task based parallelism where thereamasterest in profiling individual tasks instead
of getting timing results averaged over all tasks. Both timers can be found in the
gridpack::utility namespace.

TheCoarseTimer class represents a timer that is globally accessible from any point in the
code. A pointer to this timer can be obtained by calling the function

static CoarseTimer *instance()

A category within the timer corresponds to a set of things that are to be imeud: category in
the timer can be created using the command

int createCateg  ory(const std::string title)

This commandareates a category thatlabkeled by the name in the stritije . The function
returns an integer handle that can be used in subsequent timin§@asample, suppose that

all calls tofunctionl  within a codeneed to be timed. The first step is to get an instance of the
ti mer and cr danttenltdhe category 0

gridpack::utility::CoarseTimer *timer =
gridpack::utilitity::CoarseTimer::instance();
int t_funcl = timer - AOAAOA#AOACT OUs2&01 AOET T se & K
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This code geta copy of the timer and returns an integer haindilencl corresponding to this
category. If the category has already been created¢cthateCategory returns a handle to
the existing category, otherwise it adds the new category to the timer.

Time increments can be accumulated to this category using the functions

void start(const int idx)
void stop(const int idx)

Thestart command begins the timer for the category represented by the hndéend
stop turns the timer off and accumulates the increment.

At the end of the program, the timing results for all categories can be printed out using the
command

void dump(void) const

The results for each category are printed to standard\owxample of a portion of the output
from dump for apower flov codeis shown below.

Timing statistics for: Total Application

Average time: 14.7864
Maximum time: 14.7864
Minimum time: 14.7863
RMS deviation: 0.0000
Timing statistics f or: PTI Parser
Average time: 0.1553
Maximum time: 1.2420
Minimum time: 0.0000
RMS deviation: 0.4391
Timing statistics for: Partition
Average time: 2.8026
Maximum time: 2.9668
Minimum time: 1.7142
RMS deviation: 0.4398
Timing statistics for: Factory
Average time: 1.2424
Maximum time: 1.2540
Minimum time: 1.2336
RMS deviation: 0.0056
Timing statistics for: Bus Update
Average time: 0.0019
Maximum time: 0.0025
Minimum time: 0.0016
RMS deviation: 0.0003
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For each category, the dump command prints out the average time spent in that category across
all processors, the minimum and maximum times spent on a single processor and the RMS
standard devigon fromthe mean across all processors. It is also possible to get more detailed
output from a single category. The commands

void dumpProfile(const int idx) const
void dumpProfile(const std::string title)

can both be used to print out how much time vpensin a single category across all processors.
The first command identifies the category through its integer handle, the second via its name.

Some other timer commands also can be useful. The function
double currrentTime()

returns the current time in saws (if you want to do timing on your own). If you wanntrol
profiling in differentsectiors of the code the command

void configureTimer  (bool flag)

can be used to turn timing oftdg = false ) or on flag = true ). This can be used to
restrict timing © a particular sectroof code and can be used for debugging and performance
tuning.

In addition to theCoarseTimer class, there is a second class of timers calé=dlTimer

LocalTimer supports the same functionality@earseTimer but differs from the

CoarseTimer class in thatocalTimer has a conventional constructor. When an instance of

a local timer goes out of scope, the information associated with it is destroyed. Apart from this,
all functionality inLocalTimer is the same aSoarseTimer . TheLocal Timer class was

created to profile individual tasks in applications such as contingency analysis. Each contingency
can be profiled separately and the results printed to a separate file. The only functions that are
different from theCoarseTimer functions ae the functions that print out results. The

dumpProfile  functions are not currently supported anddbenp command has been

modified to

void dump( boost::shared_ptr<ofstream> stream) const
This function requires a stream pointer that signifies whichHgediata is written to.

Exception s

The math module has been implemented so that failures throw exceptiess can be caught

by other parts of code and managed so that code does something more graceful than simply crash
when an error is encounterdébr exkample, a calculation that failebause the solver throws an
exception might try to run again using a different solver. In a contingency analysis calculation, a
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contingency that fails because the solver did not converge can be marked as a failecbcalculati
and the code can proceed to the next contingency. This allows the code to evaluate all
contingencies even if some do monverge

A solver exception can be hardlusing the following construct

LinearSolver solver(*A);

/I User code...

try {
solver.solve(*B,*X);

} catch (const gridpack::Exception e) {
/I Do something to manage exception

}

If the solve command fails, it throwsgadpack::Exception that can then be managed by
the code. This could consist of simply exitifganly or the code could try and take corrective
action by using a different algorithm.

Exceptions can also be added to error conditions that are detected in user written code so that the
error can be picked up in some other part of the application anagedthereExceptions have
two constructors that can be used in applications

Exception(const std::string msg)
Exception(const char* msg)

wheremsg is a text string describing the error that was encountered. This message can be read
later using the functio

const char* what()
Exceptions are usually created in user code using the following syntax
if (... some_condition_is_violated v q
OEOI x COEAPAAEKkKk wOAADPDOEI 1523A0A0EAA AOOT O
}

The error message can be printed out to standar@iostandard error) by catching the
exception and calling’hat

try {
/I Some action

} catch (const gridpack::Exception e) {
std::cout << e.what() << std::endl;
/[ After printing error take some action
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}

Hash Distribution Modu le

Thehashdistributionfunctionality provides a simple mechanism for quickly distributing data
associated with individual buses and branches to the processors that own those buses and
branches. This situation can come up in several contexts, particutatynetwork data is
distributed across multiple files. For example, the information on measurements in the state
estimation calculation is containedarile that is distinct from the file that holds the network
configuration. The program starts by remgdin the network configuration and partitioning it.

The program next reads in the measurements, but there is no simple map between the
measurements, each of which is associated with either a branch or a bus, and the distributed
network. Even if the measements are read in before the network is distributed, there is still no
simple map between measurements and their corresponding buses and bsarchesme
components may have no measurements associated with them and other components may have
multiple measurements. Moving this data to the rigiuicessor and providing a simple way of
mapping it to the correct bus or branch on that processor is-@iviahtask.

TheHashDistribution moduleis a templated claghatassumes that the data that is to be
sent tothe huses and branches are heldiserdefined structslt is contained in the
gridpack::hash_distr namespacelhe structs used for branches can be different from
the structs used for buses. If we designate the bus and branch structs by thBus&rats
andBranchData thentheconstructor for thélashDistribution class has the form

HashDistribution<MyNetwork, BusData, BranchData>
(const boost::shared_ptr<MyNetwork> network)

Both theBusData andBranchData structs must be specified when dreg a new
HashDistribution object, even if only bus or branch data is actually being used. If you are
just using bus data you can simply repeatBhsData type in the branch sletithout causing

any problems. Similarly,qu can also usBranchData in both slots if you are only interested

in moving data to branches.

The following command can be used to move bus data to the processors that actually hold the
corresponding buses

void distributeBusValues(std::vector<int> &keys,
std::ve ctor<BusData> &values)

The intekgyso holdygy fihe original indices of the
fivalues 0 1 s s u p pto. $Shekdys tandvaloesp vectors should be the samaad the

data in thevalues array at index should be mappei the bus indicatedytthe original index

stored at the same location in #eys array This functionis collective andanust be called on
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all processorsThe amount of data on each processor does not need to be the same and some
processors, or even magtthem, can have no ddtiais still necessary to call the
distributeBusValues functionacross all processors even if sopnecessa contaimo

data) It also possible that the same original index can appear multiple times in the keys array,
i.e. multide pieces of data can map to the same bus. Ontptitewalues array contains all the
data objects that map to buses on that processor and the keys array conladasititeces of

the bus. This will include data that maps to ghost buses so a p@a@ohay map to more than
one processor in a distributed system.

An analogous command can be used to distribute data to branches. It has the form

void distributeBranchValues(std::vector<std::pair<int,int> > &keys,
std::vector<i nt> &branch_ids,
std::vector<BranchData> &values)

Branches are uniquely identified by the buses at each end of the lmanicekeys array in

this case is a vector consisting of index pairs represethtngriginal indices othese buses. The
values array contains the data to be distributed to the branches abdatieh_ids  array
contains thdocal index of the branch on outpudnlike the command to distribute bus values,
thekeys array cannot be reused to store the destinamndex of the dateSimilar to buses,
multiple data items can be mapped to the same branch.

String Utilities

At some point, users may want to develop their own parsers for reading in information in
external files. Thé&tringUtils class is contained imégridpack::utility namespace
and is designed to provide some useful string manipulation routines that can be used to parse
individual lines of a file. Other capabilities are available in standard C routines ssicbnag

and the Boost libraries also leknany useful routines. TigtringUtils class is just a
convenientontainer for different string manipulation rhetls; t has no internal state.

Some basic routines for modifying strings so that they can be compared with other strings are
void trim(std::s tring &str)

which can be used to remove white space at the beginning and end of.arsitigrfgnction will
also convert all tabs and carriage returns to white space before trimming the white space at the
ends of the string. e functions

void toUpper(std  ::string &str)
void toLower(std::string &str)

can be used to convert all characters in the stargither upper or lower case.
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Many devces in power grid applications are characterized by a one or two character
alphanumeric string. It is useful to gee#le strings into a standard form so that they can be
compared with other strings. The function

std::string clean2Char(std::string &str)

returns a two character string that is right justified. It will also remove any quotes that may or

may not be aroundther i gi nal string. The strings Cl, 0Cl1
string containing the two characters C1. A single character string will return a two character

string with a blank as the first character.

The function
std:: string trimQuotes(std::s tring &string)

can be used to remove either single or double quotation marks from around a string and remove
any remaining white space at the beginning and end of the string.

Finally, the function
std::vector<std::string> blankTokenizer(std::string &str)

will take a string in which individual elements are delimited by blank spaces and return a vector
in which each element is a separate stfitagen) This function treats anything inside the

original string that may be delimited lgyotesas a single tokereven if there are additional

blank spaces between the quotes. Thus, the string

s s 2!'4,! .4 dzdtse &t @zdzdazlskz it df
is broken up into a vector containing the strings

1

5

el 4,1 .41 dzazse
0.00056

1.02

Both single and double quotes can be used as delimiters forahsgrings.

Global Store

TheGlobalStore  class was created to make large amounts of data globally accessible to any
processor when replicating the data would be inefficient in terms of the amount of memory
required. The premise of tli&obalStore  classis that processors generate vectors of data

and this data is added tg=dobalStore  object. After all processors have completed adding
data, the dat aGlobalStaieu pdbjecaso that ibis visible to dll rocessors in
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the system. Prior to thepload ogration, the data iseld locally on the processor that generated

it. The original motivation for creating this class was to save system state variables that represent
the results of individual Biulations in a contingency anals context. Theseariables could

then be used to initiae additional calculations.

The moduleGlobalStore  is a templated class that is locatedhe
gridpack::parallel namespacelheGlobalStore  constructor is

GlobalStore <data_type> (const gridpack::parallel::Communicat or &comm)

The constructor takes a communicator as an argument sim dla¢gGlobalStore  objectwill
only be visible to processors in the communicdtalso takes the template argument
data_type that can be anfixed-sized data type. This includes stardidata types such as
int ,float ,double , etc. but could also represent udefined structs

Data can be added to tldobalStore  object using the command
void addVector(const int idx, const std::vector<data_type> &vec)

This command assumes that the Ues some way of uniquely identifying each contributed
vector by an indexdx . The indices do not have to be complete natall indices in some
interval [0 éN-1] need tobeaddedto the storage object, although large gaps between
contributed indicesre potentially wastefulThe length of the vectors can differ for different
indices and there are also no restrictions on which processor contributes which index, so
contributions can be made in any order from any procegkeronly restriction on indicas that
they are not used more than once,addVector is not call more than once on any processor
for a given indexThis behavior maps fairly well to contingency calculations where the index
represents the index of a particular contingeiitye dataayout in the GlobalStore object is
illustrated schematically in Figure 11.
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Figure 11 Schematic diagram of data storage in a GlobalStore object. Vectors can have any
length and some indices can be missing data.

Once the processors have completed addautpvs to the storage object, the data is still only
stored locally. To make it globally accéss, it is necessary to movefibm local buffers to a
globally accessible data structure. This is accomplished by calling the function

void upload()

This fundion takesno arguments. After callingpload , it is no longer possible to continue
adding data to the storage object usingati@Vector function.

Oncedata has been uploaded to the storage object, any processor can retrieve the data associated
with a paticular index using the function

void getVector(const int idx, std::vector<data type> &vec)

This function retrieves the data corresponding to index from global storage andmes it in a
local vector. TheetVector function can be catldan arbitrary nmber of times after the data
has been uploadetl.no data is found, the return vector will have length zero.

One note about using tigetVector  functionis worth mentioningThe implementatioof the

GlobalStore  classuses some Global Array calls thahgaotentially interfere with MPI calls
in a subsequent function call, resulting in the code hanging. If this occurs, it is usisailyle to
prevent the hang by callir@ommunicator::sync on the communicator that was used to
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define theGlobalStore  object This should be done after completinggetVector calls
but before making calls to other parallel functions.

Bus Tables
The bus table module was createallow applications to updatke properties of buses over
multiple scenarios. This module is dgsed to read files of the form

11002 BL 0.0011 0.0009 0.0018 0.0023
11003 BL 0.2232 0.2113 0.2202 0.2317
11005 BL 0.1188 0.1076 0.1211 0.1197
11008 BL 0.0053 0.0045 0.0067 0.0072

The first column is a bus ID, the second column is a onevo-chamacter tag identifying some
device on the bus (e.g. a generator) and the remaining columns are properties of the bus for
different scenarioslhe columns are delimited by white spaé¢¢here areN columns of

properties for the buses then the total nuntbeolumns in the file ifN+2, where the extra two
columns represent the bus indices and the device tags. The calomaising datare indexed

from O toN-1. If the properties apply to the bus as a whole and not some device on the bus, then
the tags cabe ignored but some arbitrary eroe two-character string still needs to be included

in the file for the secondotumn. The scenarios themselges represent different times,

different parameter sets, different loads &tee propertiesire assumed tceldouble precision
values.Integer values can be used as properties by storing them as double precision values and
then casting them back to integers inside the applicationall buses need to be included in the
table and in many cases, where a desaot present on a bus, it is undesirable to require that
each bus be represented.

TheBusTable module is a templated class that takes the network type as a pardinister.
located in theyridpack::bus_table namespacelhe constructor has the form

BusTable<MyNetwork>(const boost::shared_ptr<MyNetwork> network)
An external file with the format described above can be read in using the function
bool readTable(std::string filename)

wherefilename  points to the appromte file. This function will ingst the ife and store the
contents in a distributed form thedn be readily access by the applicatibims function is
collective and must be called by all processes over which the network is defined.

Accessing the data the tablecan be accomplished using ttelowing three functions

void getLocallndices(std::vector<int> &indices)
void getTags(std::vector<std::string> &tags)
void getValues( intidx, std::vector<double> &values)
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The firstfunction returns a list of the local bus indi¢cesvhich the data appkethe second
function returnsa list of the corresponding device tagxl the third function returns the values
from columnidx in the table.

After calling the functions, the data can be applied to the appropriaeusiisg a loop of the
form

MyBus *bus ;
For (i=0; i<indices.size(); i++) {
bus = n etwork - >getBus(indices]i]).get( );
bus- >setProperty(tags]i], values]i]);
}
wheresetProperty  is a userdefined function in thdlyBus class that does somethingeful
with the dataThis example assumes tha¢ tretLocallndices andgetTags functions

have already been called outside the loop.
The number of columns of properties can be accassiag the function
int getNumColumns()

This fundion is providedas amethod for accessing the total number of scendirestly from
the bus table input, instead of having to include it as a separate parameter

Generalize Matrix -Vector Interface

The matrixvector interface described earlisrsuitable for problems where the independent and
dependent variables are botls@sated with buses. Howevetr does nowork for systems were
some variables are associated with branches. This can occur in optimization probleass such
state estimation, where measurements are made on both buses and braechesx&surement
contributes arequation to the statestimation optimizatioywhich results in dependent variables
associated with branches. To handle these types of problems, a more general approach to
creating matrices and vectors is required. This is implemented VizethdaVeclinterface

class. As illustrated in Figure figBaseComponent class directly inherits from this interface,
along with theMatVeclinteface

Unlike theMatVeclinterface class, there is no definitive way to map which elements are
contributed by a branchr dus, and the number of elements contributed by a branch or bus does
not reduce to simple blocks. Thus, the idea that buses and branches contribute simple blocks of
data must be abandoned. TBenMatVecinterface just assumes that buses and branches
contribute some number of equations (dependent variables) to the matrix and that they also
contribute some number of independent variables to the matrix. This is information is embedded
in the function calls
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virtual I nt matrixNumRows(void)
virtual I nt matrixNumC ols(void)

These two functions specify hawany dependent variables (roves)d how many independent
variables (columns) are associated with a bus or branchhé&state estimation moduleat is

currertly available in the GridPACKelease, the dependeranables are the number of
measurements that are associated with the bus or branch amdiegpendent variables are the

voltage magnitude and phase angle, which are only associated with busef.tfhausate

estimation Jacobian is being buthie marixNumRows function returns the number of
measurements on each bus and ¢lraimhematrixNumCols  only returns a nozero value for

buses since the branches have no independent variables. This value is generally 2, if the bus has
any measurements assaethwith it or is attached tolaus or branch that has measurements
otherwise the value is 0. If the bus has measurements and is the reference bus, then the function
returns 1These functions allow the generalized mappers to determine the dimensions of the
matrix (for state estimation, the Jacobian is not necessarily square).

Unlike the original matrixvector interface, the user has to assign the row and column indices to
each matrix element. The actual values of these indices are evaluated by the ntapjzeuajpu

to the user to take the row index for a particular dependent variable (measurement) and the
column index for a particulandependent variable (voltage maguiguor phase angle) and pair
themwith a matrix element (contribution to the Jacobidme functions that are used for this
purpose are

virtual  void matrixSetRowlIndex(int irow, int idx)
virtual  void matrixSetColindex(int icol, int idx)
virtual int matrixGetRowlIndex(int irow)

virtual int matrixGetCollndex(int icol)

The first two functions & used by the mapper to assign indices for each of the rows and
columns contributed by a component. The values of the indices need to be stored in the
component so that thean be accessed by other components when evaluating elatrients.
Although thes functionsare only called by the mapper, thesged to be implemented by the
user, since multiple matrices may be generated by the applicBtiervariablesrow and

icol refer to the list of rows and columns contributed by the component, while theidxdas
the global index for that row or column in the full matrix. Thenpoif the first two functions is
to create a map between the local index of the row or column and the global index of the
corresponding row or column in the full matrix. This mapeasded because matrix elements
constructed on one component may refer to rows or colemasher components. The second
pair offunctions allow users to recover the global index from the local index.

For examplethe state estimation calculation needs&able to build the Jacobian matrix plus a
diagonal matrix that represents the inverse of the uncertainties in all the meassiréheestate
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estimation components have two modiesiobian_H andR_inv for each of these
calculations. ThenatrixSetRowinde  x method for the buses has the form

void SEBus::matrixSetRowlIndex(int irow, int idx)
{
if (p_mode == Jacobian_H) {
if (irow < p_rowdidx.size()) {
p_rowdJidx[irow] = idx;

} else {
p_rowdidx.push_back(idx);
}
} else if (p_mode == _inv) {

if (irow < p_rowRidx.size()) {
p_rowRidx[irow] = idx;
} else {
p_rowRidx.push_back(idx);
}
}
}

The row indicedor the Jacobian and Rare stored in two separate STL arrpysowJidx and
p_rowRidx . For the state estimaticexample, the number of rows (tooth the Jacobian and
R is equal to the number of measurements associated with the component. These
measurements are held in an internal list in some ordée Humber of measuremewis the
busis M then tharow index will run from 0,..,M1, with theirow index corresponding to the
irow element in the lisbf measurementg he independent variables are also assumed to be
ordered in some fashion. Again, for the state estimation exarhplghdse angle is indexed By
and the voltage magnitude is indexed by 1.

The function for accessing the row indices is implemented as

int gridpack::state_estimation::SEBus::matrixGetRowlIndex(int idx)

{
if (p_mode == Jacobian_H) {
return p_rowdidx[idx];
} else if (p_mode == R_inv) {
return p_rowRidx[idx];
}
}

95



Again, depending on the mode, this function will return different vadnesfor thisreasonthese
functions need to be implemented by the ufaey cannot bemplemented as part of the
frameworkbecausehe numler of modes is applicatiespecific and controlled by the developer.

The functions that are used to actually evaluate matrix elements are

virtual  int matrixNumValues(void) const
virtual  void matri  xGetValues(ComplexType *values,
int *rows, int *cols)

The first function returns the total number of matrix elements that will be evaluated by the
component. This is used inside thapper to allocate arrays that haldtrix elementgoming

from the componentd he second function is &d to evaluate actual matrix elemeideng with

their row and column indice$he realvalued version ofmatrixGetValues replaces

ComplexType with double . This functia is the one that will make uséthe

matrixGetRowIindex  andmatrixGetCollndex functiors. The evaluation of the
matrixNumValues function can be quite complicated. For the state estimation Jacobian

matrix, the number of matrix elements contributed by a component depends on the number of
measurements associated with that component and theenoimlariables that couple to that
measurement. A measurement on a bus will usually contribute two values for the independen
variables on the bus, plus additional two values for each bus that is attached to the center bus
via a branch. This number Wwidle modified slightly if one of the buses in this group is a

reference bus. For branches, the number of matrix elements contributed by each measurement is
approximately four, two elements for each bus at either end of the branch. This number may drop
if one of the buses is a reference bus.

ThematrixGetValues function is used tevaluate each of theatrix elements. It also gets

the matrix indices for this element from the appropriate network component. The number of
matrix elementseturned by this funatn mustcorrespond to the number returned by the
matrixNumValues function. To see how the assignment of the indices works, we can look at
the matrix element of the Jacobian corresponding to the gradient of a realimeatérn
measuremerf; on bus with respect to the phase angle on anothey thet isconnected to

via a single branchhe contributiorto the Jacobian from this measuremisrgiven by the

formula

— WO OO0E+ — 86 ATS —

Supposd; is measuremetrikton the bus. Thetherow indexim for this matrix element can be
evaluated by calling the function

im = matri xGetRowlndex(k);
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The column index is associatedth the phase angle varialida the remote bys Assuming that
a pointer bus_j ) to the remote bus is already available, then the column jndéar this
matrix element could be obtained by calling

jm =bus_j ->matrixGetColindex(0);

This function is called with the argument O since the dependent variables are always ordered as
phase angle (0) followed by voltage magnitude (1). The full list of Jacobian matrix elements can
be obtained by loopg over all measurements. For edcsmeasurement, there are

contributions from the dependent variables on each connected bus pkantwioutions from

the calling bus. Similarly, for each branch measurement there are approximately four
contributions cming from the independent variables associated with the buses at each end of the
branch. A simple counter variable can be used to make sure that the matrix element value and the
corresponding row and column indices stored in the same location\dlties , rows and

cols arrays that are returned by thetMatrixValues function.

The GenMatVeclinterface also includes functions for setting up vectors. These work in a
very similar way to the generalized matrix functions, so they will only be described briedly. T
two functions

virtual void vectorSetElementindex(int ielem, int idx)
virtual  void vectorGetElementindices(int *idx)

can be used to set and retrieve vector inditles.indexielem is the local index within the
element whiladx is the global index witm the distributed vectom this case it is usually
more convenient to get all indices associate with a component at once, so the
vectorGetElementindices returns an array instead of a single value. The function

virtual  int vectorNumElements() const
returrs the number of vector elements contributed bgraponent and the function
virtual  void vectorGetElementValues(ComplexType *values, int *idx)

returns a list of tl values along with their globaidices.For real vectors, replace the
ComplexType array wit an array of typeouble . Again, the index value can be obtained by
first calling thevectorGetElementindices function and using this to obtain the correct
index for each element.

The vector interface includes one additional function that does not ltaxmeerpart in the
matrix interface. This is the function

virtual  void vectorSetElementValues(ComplexType *values)
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This function can be used to push values from a solution vector back into the network
components. The values are ordered in the same whg aalties in the corresponding
vectorGetElementValues call, so it is possible to unpack them and@sshem to the
correct internal variables for each component. This function is analogousset\adue s call
in the regulaMatVecinterface

The functiors in theGenMatVeclinterface are invoked in the generalized mappers. These
reside in th&GenMatrixMap andGenVectorMap classesLike the standard mappers, these
classes are relatively simple and contain only a few methodsGa@hlatrixMap class
consists othe constructor

GenMatrixMap<MyNetwork>(boost::shared_ptr<MyNetwork> network)
and the methods

boost::shared_ptr<gridpack::math::Matrix> mapToMatrix(void)

void mapToMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)
void mapToMatrix(gridpack::math::M atrix &matrix)

void overw riteMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)
void overw riteMatrix(gridpack::math::Matrix &matrix)

void incrementMatrix(boost::shared_ptr<gridpack::math::Matrix> matrix)
void incrementMatrix(gridpack::math::Matrix &m atrix)

These functions all have the same behaviors as the analogous functions in the standard
FullMatrixMap . TheGenVectorMap class has the constructor

GenVectorMap<MyNetwork>(boost::shared_ptr<MyNetwork> network)
and supports the methods

boost::shared_ptr  <gridpack::math::Vector> mapToVector(void)
void mapToVector(boost::shared_ptr<gridpack::math::Vector> &vector)
void mapToVector(gridpack::math::Vector &vector)

These functions have the same interpretations as the analogous functions in the
BusVectorMap class. A new function is

mapToNetwork(boost::shared_ptr<gridpack::math::Vector> &vector)

which can be used to push data from a vector back into the network components (both buses and
branches).
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Generalized Slab Mapper

The generalized slab mapper also usestfans in the generalized matmector interface to

build dense matricehese matrices are dense since they are geddrgttaking a typical

vectorthat correspond® a set of variablesn the buses and branclaes=l repicating the vector

for differert values of the variabledn example would be a matrix formed from a time series of

values for a set of variables on the buses and branches. One set of indices for the matrix
corresponds to the set of variables and the other set of indices correspiedste seriedn a
certain sense, these matr i ceagablehavengadilfyaé 0 vect o
value, they have multiple values. In general, slab matrices are not square. The slab matrices are
used in the Kalman filter application, tithey may have applicability elsewhere.

The slab mappers use additional functions from3aaMatVecinterface in order to

construct matrices. These functions are analogous to the functions for setting up vectors using
theGenVectorMap . The main differences that instead of describing a list of values, the

functions describe a matrix block. The row dimension corresponds to a list of variables and the
column dimension describes the number of values taken by each variable. The column dimension
must be the sae across all variables. The contribution to the matrix from each network
component is given by the function

void slabSize(int *rows, int *cols) const
The index for each row can be stored using the function
void slabSetRowIndex(int irow, int idx)

This fundion is called by the mapper and is analogous tod¢istorSetElementindex

function.For the slab matrices, there is no corresponding call for columns since the matrices are
dense and all rows have the same number ofzeom columns. The indices can b&ieved by

the function

void slabGetRowlIndices(int *idx)

which is similar to therectorGetElementindices function.

Optimization

GridPACK supports optimization via an interface that can be applied to bus and banch
components, as well as wrappers to somencomoptimization libraries. At present, there are no
example problems available for the optimization capability in GridPACK.

The optimization interface can be optionally inherited by the bus and branch classes. Unlike the
other interfaces described in tiiscument, this is not already included in the
BaseBusComponent andBaseBranchComponent classesA component that wants to use
the optimization interface must explicitly inherit the interface when declaring the class. The
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optimization interface is built uground théexpression  class that is designed to provide

some functionaprogramming capability to GridPACK. This functionality matches the interfaces
to many optimization packagesdditional classes needed by the optimization interface are the
Variable class and th€onstraint  class.

TheVariable , Expression andConstraint  classes ardefined in the

gridpack::optimization namespace. A number of different types of variables inherit

from Variable . This includeRealVariable , IntegerVariable and

BinaryVariab le . Variables can take on different values and are designed to be used as parts
of expressions. Expressions, in turn, can be composed of variables and can also be composed of
other expressions. This allows users to build up quite complicated functiorgafple of an
expression is the following

typdef boost::shared_ptr<Variable> VarPtr;
typedef boost::shared_ptr<Expression> ExpPtr;

VarPtr x;

ExpPtr f;

x.reset(new RealVariable(0.0));

ExpPtr a(new RealConstant(5.0));
ExpPtr b(ne w RealConstant( -2.0));
f=a*x +Db;

This code fragment defines the functionNote that the last line is not an assignment in the
conventional sensé; does not represent the value computed from the current valaex ,odnd
b but rather the operatn of multiplyingx by the constant valug and then adding the constant
valueb to the result.

The functions in the optimization interface are all expressed in terms Bkginession and
Variable classes. Apart from simple constructorsdestructors,itere are only threeinctions

in this interface. The first of these returns a list of all variables associated with a particular bus or
branch.

std::vector<boost::shared_ptr<Variable> > getVariables()

Note that the variables returned by a network comparanbe used in expressions generated

by other components but all variables in the problem should be returned by one component
somewhere in the network and by no more than one component. This function is called by the
optimizer to get a complete listing wériables. Ghost buses and branches do not call this
function.
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The second functiors used to determine the constraints in the systegonstraint is a relation
between two expressions. Allowed relations<are>= and==. The function

std::vector<boost: :shared_ptr<Constraint> > getLocalConstraints()

returns a list of constraints that are associated with a particular network component. This
function assumes that all returned constrasats be evaluated by the associated network
component. Constraints thare functions of variables on the component plus variables on
attached components fall into this category. Simple constraints defined as being numerical
bounds on the value of a variable can be incorporated into the variables definitions. The
Constraint  class is designed to handle more complicated constraints that are functions of one
or more variables.

The final function in the optimization interface is
boost::share_ptr<Expression> getObjectiveFunction()

This function assumes that the objective functmrthe entire system is a sum of terms

contributed by each network componeaiises are branches that contribute nothing can return a
null pointer. These three functions can be used to define the complete optimization problem. The
remainder of this sectiowill expand on the different classes used to implement these functions.

TheVariable class is used to define different types of variables. Variables can have real
values, integer values or they can be binary swiches (0 and 1). All types of variallesvae
from theVariable base class. THeealVariable  classhas two constructors

RealVariable(double val)
RealVariable(double val, double vmin, double vmax)

The first constructor initialies the variable with the valual , the second constructor initiadis
the variable with the valueal andapplies the constraints

val >= vmin
val <= vmax

to the variable. These constraints could also be applied usi@ptisraint  class, but this is
obviously simpler, if applicabl&he variable can be namedngsithe method

void name(const std::string name)
The name of the variable can be recovered by the user with the function

std::string name() const
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The name is an important property of the variable. It allows the application to identify two

variables as repsenting the same quantity if they are located on different network components.
This can happen with ghost buses and branches, where multiple copies of the same bus or branch
may exist in the system. To make sure that the application can identify vafiabledifferent

copies of the same network components as being the same, the variables defined within the
copies must all have the same names. Conversely, variables from physically distinct network
components need to have unique names that distinguishribveneach other.

All variables have an implicit upper and lower bopeden if this is not explicitly set using the
constructor. If only the initial value of the variable is set by the constructor, then the upper and
low bounds are set internally to maahilimited values. The actual limits of the variable, along
with the initial value, can be recovered with the functions

double initial() const
double lowerBound() const
double upperBound() const

ThelIntegerVariable class is similar to thRealVariable  class except that only
integer values of the variable are allowed. It has the two constructors

IntegerVariable(int val)
IntegerVariable(int val, int vmin, int vmax)

The behavior of this class is similar to thaR&alVariable , except all arguments are
integes. Similar to the RealVariable class, the Integer variable class supports the functions

void name(const std::string name)
std::string name() const

int initial() const

int lowerBound() const

int upperBound() const

Finally, theBinaryVariable class has thargyle constructor
BinaryVariable(int val)

TheBinaryVariable class inherits from thimtegerVariable class and has lower and
upper bounds of 0 and 1. It can only take on these two v&ureser to the real and integer
variable classes, it has the methods

void name(const std::string name)
std::string name() const

int initial() const

int lowerBound() const
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int upperBound() const

In this case the last two methods are redundant, since the return values will always be 0 and 1,
respectively.

Variables can be usd to create expressions. Expressions can consist of a single variable, a
constant, ovariablesand expressions combined together using unary or binary functions. The
expression class is designed to support the relatively simple sums over polynoméaais that
encountered in power grid applications, but even with this limited scope, quite a few complicated
functions can be created with it. Expressions never use variables directly, they are composed
using variable pointers, so all variables in an expresdionld be instantiated using a
boost::share_ptr<Variable> constructExpressions themselves should also be
instantiated using boost::share_ptr<Expression> construct. To create a simple

guadratic polynomial requires the code

VarPtr x;

ExpPtr a(new RealCon stant(1.0));

ExpPtr b(new RealConstant( - 2.0));

ExpPtr c(new RealConstant(3.0 );
x.reset(new RealVariable(0.0, -10.0,10.0));
ExpPtr x2 = x"2;

ExpPtr p = a+b*x+c*x2;

The exponentiation operation in tB&pression class does not have the correct precedence
behavior so it is necessary to define thepression x2 and then using it to define
Expressions can be combined using the binary operations

ExpPtr+ExpPtr
ExpPtr - ExpPtr
EXpPtr*ExpPtr
ExpPtr/ExpPtr

Expressions can also bsed inthefunctiors

ExpPtriint
sin(ExpPtr)
cos(ExpPtr)

More complicated expressions can be built up from these simple operations. A constant
expression can be created using the constructs

ExpPtr var(new RealConstant(double));
ExpPtr var(new IntegerConstant(int)) X
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These can thebe used in othexxpressions as parameters.
Finally, constraints can be created using constructs such as
boost::shared_ptr<Constraint > const(ExpPtrl relation constant );

where the character string relation can be

e, " e
e. " e
e =e

and constant isdouble orint value.

Application Modules

Many of the example applications in GridPACK have been converted to modules that can be
called from other programs. These modules make it relatively simple to chain different types of
calculationgogether to form larger applications. An example is using power flow or state
estimation to initialize a dynamic simulatiofhe modles are designed to sepaifa major

phases of the calculation into ksaso that users have some fgrained control thzallows them

to mix different applications together. In most cases, different options for setting up calculations
are provided so that once a network has been read in and partitioned, it is not necessary to repeat
this process when a new calculation &t&d based on the results of a previous simulation.

Currently, threepplications are available as modules within GridPACK. They include power

flow, state estimation, and dynamic simulation using the futhatrix. Each of these modules

can be used to ae a short, standalone application, but the gdalésable users to combine
modules together in more complicated work flows. These modules can also be used as a starting
point for users to create their own applications by modifying the existing calde modules to

create new functionality. Each of the modules is described in more detail Elample codes

that use the modules to implement applications can be found sncilapplication

directory. These include powerflow, state estimation, conticigenalysis and dynamic
simulation.These directories also contain sample input networks and input files. Options for
different solvers can be found in these files.

Power Flow

The power flow module consists of a collection of function calls that candoetaset uand
run powerflow calculations. Additionatoutines are designed to support different types of
contingency analysig.he power flow application class®~AppModule and belongs to the
gridpack::powerflow namespace. The constructor and destruor this class are simple
and only create the basis power flow object. In particular, the power flow network must be
created outside the power flow object and then assigned to the object when the network
configuration file is read in. This can be dami¢h the call
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void readNetwork(boost::shared_ptr<PFNetwork> &network,
Configuration *config)

The Configuation object should already be pointing to an open file containing a
Powerflow block This blockcontains anetworkConfiguration field that has th name
of the PSS/E format file containing the network informatibime network configuration file is
read directly from the input deck by treadNetwork  method.ThePFNetwork is defined

in the thegridpack.hpp  header file The configuration module is usily opened in the main
calling program and a pointer to the file can be passed through to power flow module. The
readNetwork routine also partitions the network.

Once the network has been read in,ithernal indices and exchange buffers can be set up by
calling

void initialize()
The power flow application is now ready to be used. To solve the current configuration, the calls

void solve()
void nl_solve()

can be used. The first call solves the system uses a hand coded IReptmon iteration loop to
solvethe system, the second call uses alimmar solver to solve the power flow equations. Both
solvers can be controlled through solver options in the inpufTie.type of linear solver used

in the solve routine is controlled by the parameters iitmesarSolver  block, the nodinear
solver is controlled by the properties in thenlinearSolver block

Output from the power flow solution can be written to an output file or standard out using one of
the commands

void write()
void writeBus(const char* signal )
void writeBranch(const char* signal)

The first command writes out theal and imaginary parts of the complex pofeerthe branchs

and the voltage magnitude and phase angle for the Bitssecond command only writes out

bus properties. If no argumies given, the command writes out the voltage magnitadephase

angle for every bus. For buséesh e ar ggo mevm i th@&rsal anduirhaginary parts of the
complexvoltag amabrdfio wr i t es out tothlactive gnghreactivefcoritu s, t h e
power loads, and thtetal active and reactive generator power outplite r b r #lawcoh e s , i
writes out the real and imawgiry parts of the complex power afrdcord 6 wr i t es out th
values of the resistance, reactance, charging and A, B, C ratiregcfoline element.
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Additional information can be written to standard out or a file using the command
void print(const char* buf)

which writes out the contents of the character aotdy. This command can be called from all
processors, but only one procesactually writes out data.

The location of output can be controlled using the commands

void open(const char* filename)
void close()

If the write commands gorint  are used without callingpen, then all output is directed to
standard out. lbpen is called, then the output is directed to the file specified in filename until
theclose command is called, after which all output is again directed towards standard out.

If the results of the power flow calculation are needed by another calculatiothévetiage
magnitude and phase angle of the bus and the real and imaginary parts of the complex power for
each generataran be stored in tHeataCollection objects on each bus using the command

void saveData()

If the network is then copied to a new type of netythis information is carried over to the new
network. The voltage magnitude apldase angle is stored in tBataCollection variables
BUS_PF_VMAGndBUS_PF_VANGnNd the generator parameters are stored in the indexed
variablesGENERATOR_PF_PGEN][ilandGENERATOR_PF_QGEN]i] where the indek

runs over all generators on the bus.

The remaining methods in the PFAppModule class support different kinds of contingency
applications. Contingencies are defined using the data structure

struct Contingency

{
intp_ type;
std::string p_name;
/I Line contingencies
std::vector<int> p_from;
std::vector<int> p_to;
std::vector<std::string> p_ckt;
/I Status of line before contingency
std::vector<bool> p_savelineStatus;
/I Generator contingencies
std::vecto r<int> p_busid;
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std::vector<std::string> p_genid,;
/I Status of generator before contingency
std::vector<bool> p_saveGenStatus;

h

The variablep_type corresponds to an enumerated type that can have the Gauesator
andBranch . The variablep_sav eLinesStatus  andp_saveGenStatus are used

internally and do not have to be set by the user. The remaining variables are used to describe the
lines and generators that may fail during a contingency event. These variables are all vectors,
since a single coimgency could theoretically represent the failure of multiple elemEants.

failures of typeBranch , the variablep _from andp_to arethe original indices of th&romo
andfitoo bus that identify a branch and the varigblekt is the 2 character identi of the
individual transmission element. For failures of tgpenerator , p_busid is the original

index of the bus ang_genid is the 2 character identifier of the generator that faits.

example of how to use this functionality is given in the contingemalysis application that can
be found undesrc/applications/contingency_analysis . This is also a good
example of how to use modules.

Two calls

bool setContingency(Contingency &event)
bool unsetContingency(Contingency &event)

can be used to set or uhgsecontingency. The calinsetContingency  should only be called
after callingsetContingency  and it should use the sareeent argument. After calling the
unsetContingency method, the network should have the same configuration as before
calling thesetCont ingency method.

The remaining calls iPFAppModule can be used to determine the statfia network after
solving aconfiguration witha contingencyThe functions

bool checkVoltageViola  tions(double Vmin, double Vmax)
bool checkVoltageViolations(int area, double Vmin, double Vmax)

can be used to check for a voltage violation anywhere in the systemWhareandVmaxare

the minimum and maximum allowable voltage excursions (per unit). The second function only
checks for violations on buses with the spedifralue ofarea . These functionsra true if there

are no voltageiolations and return false if a violation is found on one or more blises.
frequently turns out that many networks have voltage violations even in the absence of any
contingencies and isioften desirable to ignore these violations. This caacbemplished using

the function
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void ignoreVoltageViolations(double Vmin, double Vmax)

If this function is called after solving the power flow system in the absence of any contingencies,
then buseghat contain violations will be ignored in subsequent checks of violations. These
settings can be undone by calling

void clearVoltageViolations()
Line overload violations can be checked by calling one of the functions

bool checkLineOverloadViolations()
bool checkLineOverloadViolations(int area)

The limits on the line are contained in parameters read in from the network configuration file so
these functions have no arguments describing the line limits. The second function will only
check for violations on fies with the specified value afea . Like voltage violations, branches

that display line overload violations that are present even without contingencies can be ignored
in the checks by calling the function

void ignoreLineOverloadViolations()

after runninga calculation on the system without contingencies. These settings can be cleared
using the function

void clearLineOverloadViolations()

Finally, the internal voltage variables that are used as the solution variables in the power flow
calculation can be resto their original values (specified in the network configuration file) by
calling the function

void resetVoltages()

Again, this may be useful in contingency calculations where multiple calculations are run on the
same network and it is desirable thagytkall start with the same initial condition.

State Estimation Module

The state estimation modutan be used to set up and run a state estimation calculation. It does
not have the extra functions that the poWl@v module contains for supportigntingecy

analysis, so the interface is a bit smaller. In addition to a standard network configuration file, the
state estimation calculation needs a second file consisting of measurements. This file has the
format

<Measurements>
<Measurement>
<Type>VM</Tye>
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<Bus>1</Bus>
<Value>1.0600</Value>
<Deviation>0.0050</Deviation>

</Measurement>

<Measurement>
<Type>Pl1J</Type>
<FromBus>1</FromBus>
<ToBus>2</ToBus>
<CKT>BL</CKT>
<Value>1.5688</Value>
<Deviation>0.0100</Deviatio n>

</Measurement>

<Measurement>
<Type>QIJI</Type>
<FromBus>1</FromBus>
<ToBus>2</ToBus>
<CKT>BL</CKT>
<Values>- 0.2040</Value>
<Deviation>0.0100</Deviation>

</Measurement>

<Measurement>
<Type>PI</Type>
<Bus>1</Bus>
<Value>2.3240</Value>
<Deviation>0.0100</Deviation>

</Measurement>

<Measurement>
<Type>QI</Type>
<Bus>1</Bus>
<Value>- 0.1690</Value>
<Deviation>0.0100</Deviation>

</Measurement>

</Measurements>

for the five types of measurentsVM P1J , QIJ, Pl , andPJ. Measurements can appear on any
element of the network and multiple measurements are allowed on each elraestate
estimation module does not have any error checking ability to determine if there are sufficient
measurements uarantee solvability, if not enough measurements are available éhen th
calculation will simply crash or fail to converge.
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The state estimation module is represented bgE®ppModule class which is in the
gridpack::state_estimation namespacelhegridp ack.hpp file contains a
definition for the state estimation netw@ENetwork . After instantiating ai’EAppModule
object and a shared pointer toSiENetwork , the state estimation calculation can read in an
external network configuration file using the cmand

void readNetwork(boost::shared_ptr<SENetwork> &network,
gridpack::utility::Configuration *config)

The Configuration object should already be pointing at an open file containing a
State_estimation block. Inside theState estimation block there shdd be a
networkConfiguration field containing the name of the network configuration file. The
file name is parsed directly inside tteadNetwork method and does not need to be handled
by the user.

Alternatively, theSENetwork object may havalready beegloned from an existing network

and therefore there is no need to read in the configuration from an external file and partition it
across processors. In this case, 3BA\ppModule can be assigned the network using the
command

void setNetwork(boost::shared__ ptr<SENetwork> &network,
gridpack::utility::Configuration *config)

This function just assigns the existing network to an internal pointer, as well as a pointer to the
input file. It is much more efficient than reading in the network configurationffilee network
already exists. This can occur when different types of calculations are being chained together.

Once a network is in place and has been properly distributed, the measurements can be read in by
calling the function

void readMeasurements()

The name of the measurement file is in the input deck and a pointer to this file has already been
internally cached in thBEAppModule when the network was assigned. The measurement file
name is stored in thmeasurementList field within the State_estimation block

The network object can be initialized and the exchange buffers set up by calling the
void initialize()
method followed by

void solve()
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to obtain the solution to the system. Results can be written out to standard out using the method
void write()

This function will write out the voltage magnitude and phase angle for each bus and the real and
imaginary parts of the reactive power for each branch. In addition, it will print out a comparison
of the calculated value and the original measured valuelforeglsurements.

Finally, the results of the state estimation calculation can be savedDatti@ollection
object assigned to the buses by calling the

void saveData()

method. The voltage magnitude and phase angle are stored as the vatigbhI&&E VMAGnd
BUS_SE_VANGnNd the generator parameters are stored as the indexed variables
GENERADR_SE_PGEN][i] andGENERATOR_SE_QGEN([i]wherei runs over the set of
generators on the bus.

Dynamic Simulation Module using Full Y -Matrix

GridPACK supplies a dynamic suhation module that integrates the equations of motion using
an algorithm based on inversion of thd fmatrix. This module haseen designed to enable
theaddition of generator models that extend beyond the classical genkralsws.supports
exciters, governors, relays and dynamic loads. Models that are currently available include

Generators:

GENCLS
GENSAL
GENROU

Exciters:

EXDC1
ESST1A

Governors:

WSIEG1
WSHYGP

Relays:

LVSHBL
FRQTPAT
DISTR1
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Dynamic Loads:

ACMTBLU1
IEEL
MOTORW
CIM6BL

The full Y-matrix implementation of dynamic simulation is represented bip8reullApp
class and th®SFullNetwork , both of which reside in the
gridpack::dynamic_simulation namespace

The dynamic simulation module uses an input deck of the form

<?xml version="1.0" encoding="utf -8"?>
<Configuration>
<Dynamic_simulation>
<networkConfiguration>IEEE_145.raw  </networkConfiguration>
<generatorPara meters>IEEE_145.dyr</generatorParameters>
<simulationTime>30</simulationTime>
<timeStep>0.0 05</timeStep>
<faultEvents>
<faultEvent>
<beginFault> 2.00</beginFault>
<endFault> 2.05</endFault>
<faultBranch>6 7</faultBranch>
<timeStep> 0.005</timeStep>
</faultEvent>
<[/faultEvents>
<generato rWatch>
<generator>
<busID> 60 </busID>
<generatorID> 1 </generatorI|D>
</generator>
<generator>
<busID> 112 </busID>
<generatorID> 1 </generator|D>
</generator>
</generatorWatch>
<generatorWatchFr equency> 1 </generatorWatchFrequency>
<generatorWatchFileName>gen_watch.csv </generatorWatchFileName>
<LinearMatrixSolver>
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<PETScOptions>
-ksp_atol 1.0e -18
-ksp_rtol 1.0e  -10
- ksp_monitor
- ksp_max_it 200
- ksp_view
</PETScOptions>
</LinearMatrixSolver>
</Dynamic_simulation>
</Configuration>

The input for dynamic simulation module is contained inRiggamic_simulation block.
Two features are important, the blocks describing faults and the l@lesksbing monitored
generators. Faults are described infthdtEvent s block. The code currently only handles
faults on branches. Inside tfaultEvents block are individual faults, described by a
faultEvent  block. MultiplefaultEvent  blocks can be coained within the

faultEvents block. As will be described below,ig possible for the faults to be listed in a
separate fileThis can be convenient for describing a thaked calculation that may contain a
lot of faults.The parameters describing thelfanclude the time (in seconds) that the fault is
initiated, the time that it is terminated, the timestep used while integrating the fault and the
indices of the two buses at either end of the fault branch.

When running a dynamic simulation, it is getigrelesirable to monitor the behavior of a few
generators in the system and this can be done by setting generator watch parameters. The
generatorWatch  block specifies which generators are to be monitored. Each generator is
described within generator  block that containgheindex of thebus that the generator is
located on and the character string ID of the generator. The results of monitoring the generator
are written to the file listed in trgeneratorWatchFileName field and the frequency for
storing geerator parameters in this file is set in g@neratorWatchFrequency field. This
parameter describes the time step interval for writing results (an integer), not the actual time
interval.

Before using the dynamic simulation module, a network needs tstamiiated outside the
DSFullApp and then passed into the module. If the module itself is going to read and partition
a network, then it should use the function

void readNetwork(boost::shared_ptr<DSFullNetwork> &network,
gridpack::utility::Configuration *config,
const char *otherfile = NULL)
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The Configuration object should already be pointing to an input deck with a
Dynamic_simulation block that specifies the network configuration file. The optional
otherfile argument imreadNetwork can be used to overite the

networkConfiguration field in the input deck with a different filename. This capability
has proven useful isome contingency applicatiomiere multiple PSS/E files need to be read

Alternatively, a distributed network may already exist (it mayehbeen cloned from another
calculation). In that case, the function

void setNetwork(boost::shared_ptr<DSFullNetwork> &network,
gridpack::utility::Configuration *config)

can be used to assign an internal pointer to the network. Agai@ptifeguration object
should already be pointing to an input file.

Additional generator parameters can be assigned to the generators by calling the function
void readGenerators()

This function opens the file specified in tpeneratorParameters field in the input file
ard reads the additional generator parameters. The file is assucmdespond to the PSS/E
.dyr format The devices listed at the start of this section can be included in this file.

After setting up the network and reading in generator parameters, tlhencad be initialized
by calling

void initialize()
This sets up internal parameters and initializes the network so that it is ready for calculations.
A list of faults can be generaté@m the input fileby calling

std::vector<gridpack::dynamic_simulation ::DSFullBranch::Event>
getFaults(gridpack::utility::Configuration::CursorPtr cursor)

If the cursor variable is pointed aDgnamic_simulation block inside the input file (as in

the example input block above) then this function will return a list ofs§drdm the input deck.
However, it is also possible that the cursor could be pointed to the contents of another file. As
long as it is pointed to a block containinépaltEvents block, this function will return a list

of faults. This allows users to dexle a large list of faults in a separate file and then access the
list by including the external file name as a parameter in the input deck of their application.

The monitoring of generators specified in the input deck can be set up by calling

void setGene ratorWatch()
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This will guarantee that all generators specified in the input deck are monitored and that the
results are written out to the specified file. If this function is not called, the generator watch
parameters in the input file are ignored.

Simulatons can be run using the function

void solve(gridpack::dynamic_simulation::DSFullBranch::Event fault)

Some additional results can be written at the end of the simulation using the function
void write(const char *signal)

The signal parameter can be useddotrolwhich results are written out. This function currently
does not support any outpiét! outputresults are controlled using the generator watch
parameters.

Some additional functions can be used to control where output generated during thefaurse o
simulation is directed. The following two functions can be used to direct output frommitee
function to a file

void open(const char* filename)
void close()

The function
void print(const char* buf)

can be used to print out a string to standardlbtlie open function has been used to open a
file, then the output is directed to the file. This function is equivalent tbehder
convenience function in the serial IO classes.

Additional functions can be used to stored data from the generator watdbles These can be

used to save the time series data from a simulation in a collection of vectors. The application can
then use these series in whatever way it wants. There are four functions that enable this capility.
The first is

void saveTimeSeries(b ool flag)

This function must be called with the argumen
saved. Otherwise it is only written to out@urd no data is saved between time st€ps second

function can be called after the solve functi@s been called and the simulation is completed. It

returns a vector of time series

std::vector<strd::vector<double> > getGeneratorTimeSeries()
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This function returns a vector containing the time series data for all the watched generators
locatedon this pocessor(generators on buses owned by neighboring processors are not
included).

To find out which variables are actually in the list returnedétgeneratorTimeSeries
requires the remaining two functions. The function

void getListWatchedGenerators(std::v ector<int> &bus _ids,
std::vector<std::string> &gen_ids)

returns a list of the bus IDs anetBaracter generator tags for all monitored generators. In
particular, it assigns and ordering to these generators that is used by function

std::vector<int> getT imeSeriesMap()

This function returns a map between the elements in the list of éines seturned by
getGeneratorTimeSeries and the generators that those time series correspond to. For
example suppose the time series list has four elements in it thegtrhimpcorrespond to two
generators on processor. There are a total of six monitored generators in the systerotorsie
returned bygetListWatchedGenerators have length six, the vector returned by
getTimeSeriesMap  has length four. The value in the magxior for the corresponding

element in the time series vector points to the location of the bus index and generator tag for that
time series variable in the lists returnedgeylListWatchedGenerators . This still leaves

it up to the user to identify the aetl variable being watched within the generator. In this

example there are four variables that are watched but only two generators. Currently, the
generator watch capability only watches the rotor speed and rotor angle of each generator. The
first time seles is the speed and the second time series is the angle.

Kalman Filter

GridPACK includes a Kalman filter module that can be used for dynamic state estimation. The
Kalman filter relies heavily on parallel matrix multiplies that are not currently very high
performing, so users will probably find this module too slow for large grids. However, we
include it for users interested in exploring the use of Kalman filters in smaller applications. We
hope to improve performance in future releases.

The current implem&ation of the Kalman filter only supports classical generatdresd are
described in a PSS/Byr formatted file. The netork itself can be described using a standard
PSS/E .raw file. In addition to the .raw and .dyr files, users need to supply tiessdsga for

the voltage magnitude and voltage phase angle on all buses. These are stored as .csv files. The
format for both the voltage magnitude and phase angle files is

t-3001, Bus -1, Bus -ff t A
0.0, -0.001, -dzt stelst A
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0.1, -0.001, -dzt tstelst A
0.2, -0.001, -0zt stelst A

All entries on the same lines are separated by comrhadirst row contains the name of all
columns. The first column is time and has a name of thetferxx , wherexxx is an integer
representing the number of time steps in the Titee number of rows in the file corresponds to
xxx+1 (the extra row is the first line with the column names). The number of columns is equal
to the number of buses in the fpus one (the extra column contains the times). After the first
column, the remaing names are all of the forBus- xxx , wherexxx is an integer

representing the bus ID. The remaining rows contain the time of the measurement and the value
for the measurement on each of the buses.

The input file for the Kalman filter module used babih & dynamic simulation as well as input
that is unique to the Kalman filter module. The dynamic simulation parameters that are used
include

<Dynamic_simulation>
<simulationTime>3</simulationTime>
<timeStep>0.01</timeStep>
<!-- =1Fault Even tis known;
= 0 Fault event is unknown, switch is skipped.
- >
<KnownFault> 1 </KnownFault>
<TimeOffset> 0 </TimeOffset> <! -- skip initial measurement data - >
<faultEvents>
<faultEvent>
<beginFault> 1 </beginFault>
<endFault> 1.1</endFault>
<faultBranch>6 7</faultBranch>
<timeStep> 0.01</timeStep>
</faultEvent>
</faultEvents>
</Dynamic_simulation>

The fault used in the simulation is specified using the gaoltEvents block asfor

dynamic simulation. If the Kalman filter simulation is not being initialized from another
calculation, thenetworkConfiguration field can also be added. The KnowFault and
TimeOffset parameters are unique to the Kalman filter application and congthievithe fault

is considered to be a know event and whether all the time series data should be used in the
analysis.
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The Kalman filter block consists of the fields

<Kalman_filter>

<KalmanAngData>IEEE14 Kalman_input_ang.csv</KalmanAngData>
<KalmanMagData>IEEE14 Kalman_input_mag.csv</KalmanMagData>
<generatorParameters>IEEE14 _classicGen.dyr</generatorParameters>
<ensembleSize>21</ensembleSize>
<gaussianWidth>1e - 2</gaussianWidth>
<noiseScale>le -4</noiseScale>
<randomSeed>9313167&%</randomSeed>
<maxSteps>3000</maxSteps>
<LinearSolver>
<PETScOptions>
- ksp_view
- ksp_type richardson
- pc_type lu
- pc_factor_mat_solver_package superlu_dist
-ksp_max_it1
</PETScOptions>
</Lin earSolver>

</Kalman_filter>

TheKalmanAngData andKalmanMagData fields specify the locations of the files
containing the time series data for the voltage magnitude and phase angtbyr Tie
containing thegenerator parameters (classical gatws mly) is specified in the
generatorParameters field. Additional Kalman filter parameternsiclude

T

=

ensembleSize : The number of random ensembles generated for the Kalman filter
calculation.

gaussianWidth

noiseScale

randomSeed : This is an arbitrary integersad to seed the GridPACK random number
generator.

maxSteps : this parameter can be used to control the number of steps simulated. If the
number of steps is smaller than the number of steps in the time series data files, then only
the number of steps set maxSteps will be simulated.

The Kalman filter also needs to make use of linear solvers and the type of solver and its
parameters can be specified in this block as well.
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The Kalman filter module is represented by KamanApp class and th&almanNetwork

both of which are in thgridpack::kalman_filter namespace. At present there are only
a few functions in this class, more will probably be added as we develop this module further.
Apart from the constructor and destructor, Kia@manApp class has a methodrfreading in a
network from a PSS/E formatted file and partitioning it among processors

void readNetwork(boost::shared_ptr<KalmanNetwork> &network,
gridpack::utility::Configuration *config)

If the network already exists, then it can be applied toketieg KalmanApp object using the
function

void readNetwork(boost::shared_ptr<KalmanNetwork> &network,
gridpack::utility::Configuration *config)

The application can be initialized by ¢adl the function
void initialize()

This function will read in th files containing the time series data for the voltage magnitude and
phase angles and will set update configure the calculation based on the parameters in the input
file. The simulation is run and output generated using

void solve()

The values of the rotspeed and rotor angle for all generators will be written to the files
omega.dat anddelta.dat  after this simulation is run.

GridPACK Examples

This section will expand on the discussion of the power flow application and provide additional
examples of hovaridPACK can be used to develop applications. Two of these are simple
applications thabave been provided in GridPAQKat illustrate how the code works, without
necessarily getting involved in the details that would be needed to implement a realistic pow
grid model.The third example is an-depth discussion of the contingency analysis application.
This is an actual application but it is fairly short and provides a good illustration of how to create
multi-task simulations and also an example of hows® modules.

The firstof the simpleexample consistsofa hel | o wor | d o samessgagefrom t hat
a smalll0x 10squaragrid of buses and branches. The seaaxmmplecalculates the electric

current flow through a square grid of resistors. Botamples are designed to show how the

basic features of the GridPACKamework interact with each other. More complicated examples

for realistic models can be found in the modules and components directories under applications.
Athough these examplespresentmore complicated bus and branch models, they contain many

of the same characteristics that can be found in the hello world and resistor grid programs.
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The contingency analysis application is also discussed in depth since this illustrates a great many
of the advanced features of GridPAQKa fairly short code. These features include creating

your own parser, using subcommunicators and the task manager, using modules and controlling
output.

O(AT 1T 77101 Ad

Theii Idllo worldo program is a famous examgdeoblemfrom C programmingMany other

packages have adopted the spirit of this program, if not the specifics, to describe the simplest
nortrivial program that can be written using the package. In this section, a program that prints
out a message from eachtloe buses and branchen a small grid is described. This application
requires us to define branch and bus classes, create a network class and implement a top level
application.

We start by implementing the load and serialWrite methods iBaseComponent classfor
the bus and branch classes of buello worldd application. The bus and branch classes for this
application are called HWBus ahtiVBranch and have the header file

#ifndef _hw_components_h_
#define _hw_components_h_

#include "boost/smart_ptr/ shared_ptr.hpp"
#include "gridpack/include/gridpack.hpp"

namespace gridpack {
namespace hello_world {

class HWBus
. public gridpack::component::BaseBusComponent {
public:
HWBUus(); // Constructor
~HWBUuUs() // Destructor
void load(const boost:shared ptr
<gridpack::component::DataCollection> &data);
bool serialWrite(char *string, const int bufsize,
const char *signal = NULL);
private:
int p_original_idx;
friend class boost::serialization::acce SS;
template<class Archive> void serialize(Archive &ar,
const unsigned int version)

{
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ar & boost::serialization::base_object
<gridpack::component::BaseBusComponent>(*this)
& p_original_idx;
}
3
class HWBranch
public gridpack::component::BaseBranchComponent {
public:
HWBranchy); /[Constructor
~HWBranch]; //Destructor
void load(const boost::shared_ptr
<gridpack::component::DataCollection> &data);
bool serialWrite(char *string, const int bufsize,
const char *signal = NULL);

private:
int p_original_idx1;
int p_original_idx2;

friend class boost::serialization::access:

template<class Archive>
void serialize(Archive & ar, const unsigned int ver sion)
{
ar & boost::serialization::base_object
<gridpack::component::BaseBranchComponent>(*this)
& p_original_idx1
& p_original_idx2;

}
3
typedef network::BaseNetwork<HWBus, HWBranch > HWNetwork;
} // hello_world
} /I gridpack
#endif
TheHWBusclass has one private membgrporiginal _idx , Which is the index of the bus in
the network configuration file. Similarly, théWBranch class has two private members,
p_original_idx1 andp_original_idx2 , representing the busestah e A f r o mo

ends of the branch. The name of the file containing this cdde isomponents.hpp . The
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first two lines of the file are the standard preprocessor protection flags that guarantee that any
declarations in this file only appear in anotfilera single time. The next two lines include the
Boost smart pointer header file and treader files from the GridPAC#amework. The next

two lines declare that all functions and classes in the file are in the

gridpack::hello_world namespace. The usEramespaceis up to the user and other
choices are possible. The declaration oftfiNéBusclassinherits from the

BaseBusComponent class so all functions in tHgaseBusComponent class are available

to HWBusBaseBusComponent also provides some virtualriations, along with their default
implementations, that can be overwritterHWBus Two of these are tHead and

serialWrite functionsOnl 'y t hese functions are used in
remaining functions in the bases classes aresepted by the default implementatiomside
HWBusare declarations for the constructor, destruét@ad andserialWrite functions.

These will be implemented in thev_components.cpp file.

The final component ilWBuUSs the implementation of the seriai method. This method is

used when copying the class from one processor to another and allows the program to move all
the data associated with a particular instandéWwBusto another processor. Tieend

declaration means thBifWBushas access to pratied methods and data in
boost::serialization::access and the templated serialization function is used to
declare all internal data members that nedaketivansferred with thélWBusinstance if it is

moved from on processor to another. These elementsimelhatever base clad¥VBusmay be
derived from, which is represented by the element

boost::serialization::base_object<gridpack::component
::BaseBusComponent>(*this)

The remaining data elementgsoriginal_idx . The variablar of typeArchive is
appendedd using the operat@. In this case the data appendedrtas any serialized data
coming from the base class and the varigbleriginal_idx . The serialization function is
recursive, so including the base class is enough to guarantee thatiablesdreneath that are
also included in the serialization.

The declaration foHWBranch is very similar. The only major difference is that there are two
private variables representing the buses at either end of the branch and these must both be
included n theserialize function.

The bottom of the file contains a typedef declaration for a network using HWBus and
HWBranch for it bus and branch classes. This is a convenience and makes it easier to define
other functions and classes in the application.
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Thehw_components.cpp file contains the actual implementation of the functions declared in
hw_components.hpp . The declarations for STL vectors and iostreams and the
hw_components.hpp file are included at the top of the file so that all functions in the class
aredefined. FoOHWBUS the constructor and destructor are trivial and are given by

gridpack::hello_world "HWBus::HWBus()
{

p_original_idx = 0;
éridpack: :hello_world::HWBus::~HWBus( )
{
}

Theload function is moranterestingand is designed to transfertadhat was read in from the
network configuration filéo the internal parameters of the bus. In this case, there is only one
internal parameter, doad is fairly simple. The bus ID is stored in the variaBldS _NUMBER
so the load implemention is

void g ridpack::hello_world::HWBus::load(const

boost::shared_ptr<gridpack::component::DataCollection> &data)
{
data - >getValue(BUS_NUMBER,&p_original_idx);
}

All the parameters associated with the bus that came from the network configuration file are
storal in thedata DataCollection object, so thgetValue statement is used to get the
value fromdata and assign it tp_original_index . A completely listing of all variables
that might be found in BataCollection object can be found in the dictionary.hge

located in thesrc/parser  directory.

TheserialWrite function returns a string with a message from the bus if called by some
other program (in this case an instanc&efialBusilO ) . For A Hteebusaoeport® r | d 0
back the bus index using the function

bool gridpack::hello_world::HWBus::serialWrite(char *string,
const int bufsize, const char *signal)

{
sprintf(string,"Hello world from bus %d \ n",p_original_idx);
return true;
}
For this case, both the incoming varialide$size  andsignal areignoreds i nce @A Hel | o
worl do only has one type of oulbupbothvariabtes it i s
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could be used in more complicated implementations.blifize variable can be used to

make sure that the string does not exceed an altbuffer size andignal can by used to

produce different outputs depending on what the actual contents of sigriadratee

serialWrite implementations described for this applicatignaranteeing that the stings fit

inside the bufferis straightforwad, since all strings are the same size. For real applications, this
may not be the case. For example, when printing out generator properties, the strings from buses
can vary in size because the number of generators on a bus can vary.

The implementationsfahe functions irHWBranch are similar. The constructor and destructor
are

gridpack::hello_world::HWBranch::HWBranch(void)

{

p_original_idx1 = 0;

p_original_idx2 = 0;
}
gridpack::hello_world::HWBranch::~HWBranch(void)
{
}

Theload function is given by

void gridpack::hello_world::HWBranch::load(
const boost::shared_ptr<gridpack::component::DataCollection>
&data)
{
data - >getValue(BRANCH_FROMBUS,&p_original_idx1);
data - >getValue(BRANCH_TOBUS,&p_original_idx2);

}

This is similar to the implementati of the load function fadWBus except that the internal
data members are mapped to the values BBRENCH_FROMBWSJIBRANCH_TOBUS
elements of the data collectiobject The serialWrite function is

bool gridpack::hello_world::HWBranch::serialWrite(c har *string,
const int bufsize, const char *signal)
{
sprintf(string,
"Hello world from the branch connecting bus %d to bus %d \n",
p_original_idx1, p_original_idx2);
return true;
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Every branch prints out a string describing the brand¢arms of the bus IDs at each end of the
branch. Again, the incoming bufsize and signal variables are ignored in this case and it is
assumed that the buffer size assigned t&#r&alBranchlO object when it is instantiated is
sufficiently large to guargee that all strings from every branch will fit.

The implementationohte f act or y eclllaos swofrolrd ot haep pilH cat i on
since the class only needs the functionality in the BaseFactory class. The complete class is given

by

#ifndef _  hw_factory _h_
#define _hw_factory h_

#include "boost/smart_ptr/shared_ptr.hpp"
#include "gridpack/include/gridpack.hpp”
#include "hw_components.hpp"

namespace gridpack {
namespace hello_world {

class HWFactory
. public gridpack::factory::BaseFactory<H WNetwork> {
public:
HWFactory(boost::shared_ptr<HWNetwork> network)
. gridpack::factory::BaseFactory<HWNetwork>(network)
{
}
~HWFactory() {}
I3
} /I hello_world
} /1 gridpack
#endif

This class is defined in thev_factory.hpp file. Because the class is so simple, the complete
class declaration is given hw_factory.hpp and there is no correspondirgypp file. In

addition to including thgridpack.hpp  header, this file also includes

hw_components.hpp , so it has the definitions éfWitwork . TheHWFactory

constructor is used to initialize the underlyBgseFactory  objectwith the network that is
passed in through the argument list. That is the only functionality that is defined in this class.

The application class that is built on tojpthe component and factory classes consistiseof
class
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#ifndef _hw_app_h_
#define _hw_app_h_

namespace gridpack {
namespace hello_world {

class HWApp

{
public:
HWApp(void);
~HWApp(void);
void execute(int argc, char** argv);

h

}//'he llo_world
} /1 gridpack
#endif

This class is declared hw_app.hpp . Apart from the constructor and destructor, there is only
the function execute, which is used to actually run the program. This takes the steigdard
andargv variables as guments, whih could be passed from the top level calling program.

The implementation of these functions are relatively simple, most of the complexity for this
program is in defining the bus and branch classes. The implementations are defined in the file

hw_app.cpp

#include <iostream>

#include "boost/smart_ptr/shared_ptr.hpp"
#include "gridpack/include/gridpack.hpp”
#include "hw_app.hpp"

#include "hw_factory.hpp"

gridpack::hello_world::HWApp::HWApp(void)
{
}

gridpack::hello_world::HWApp::~HWApp(void)
{
}

void gri  dpack::hello_world::HWApp::execute(int argc, char** argv)
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gridpack::parallel::Communicator world;
boost::shared_ptr<HWNetwork> network(new HWNetwork(world));

std::string filename = "10x10.raw";
gridpack::parser::PTI123_parser<HWNetwork> parser(ne twork);
parser.parse(filename.c_str());

gridpack::hello_world::HWFactory factory(network);

factory.load();

gridpack::serial_io::SerialBuslO<HWNetwork> buslO(128,network);

buslO.header(" \ nMessage from buses \ n");

buslO.write();

gridpack::ser ia|_io::SerialBranchlIO<HWNetwork>
branchlO(128,network);

branchlO.header(" \nMessage from branches \n");

branchlO.write();

}

The top of the file contains tlggidpack.hpp  headeras well as the application headers. The
constructor and destructors the HWAppclassarethe standard defaults, so only #secute
function has any significant behavior. This function stytdefining a communicator on the set
of all processors and using that to instantiate and instanceHdiVtetwork. At this point the
network exists, but it contains no buses or branches. The next step is to read in a network
configuration file with the nam&0x10.raw . This file is written using the standard PSS/E
version 23 format. For this simple application, it is assumed thati¢hie &vailable in the
directory in which the program is being run (this filerisludedin thehello_world directory
as part of the GridPACHMistribution). The program creates an instanceTR3_parser

and uses this to parse the configuration filee program now has a copy of the full network
stored internally, but the buses and nodes are not distributed in a way that is convenient for
computation. Calling the partition method on the network redistributes all buses and branches so
that each proceswas a relatively connected chunk of the network.

The next step is to create HiWVFactory instance and use this to call the base dtzess

method. This method in turn calls thoed method on all the individual buses and branches and
transfers data from ¢éhdata collection objects the internal parameters of the buses and

branchesThe data collection objects were initialized with data collected frorhQr&0.raw

file when theparse function was calledThe remaining lines creag&erialBuslO  and

SerialBr anchlO objects that arased to print out the messages from individual bus and

branch objects. TheuslO obj ect i s used to print out a head
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a message from each bus identifying itself by the bus ID defined in the PSS#infikarly, the
branchlO obect writes out a header amgh a messageoim each branctdentifying itself by
the IDsof the busest either end

The final epadrot woofr Itdhoe afptp |l i cati on i s the main
hw_main.cppThis program consists of the lines

#include "gridpack/include/gridpack.hpp”
#include "hw_app.hpp"

int  main(int argc, char **argv)

{

gridpack::parallel::Environment env(argc, argv);

gridpack::hello_world::HWApp app;
app.execute(argc, argv);
return  O;

}

The program consists of a line creating a parallel environment, a line instantiakivg/pp

and a line calling the execute method on the application. The constructor for the parallel
environment initializes the underlying parallel communicatibralies. The destructor is called
at the end of main and terminatelscammunication libraries so théte program exits cleanly.
TheHWApp@nstance runs the application whexecute is called. A portion of the output
looks like

Message from buses
Hello w orld from bus 1
Hello world from bus 2
Hello world from bus 3
Hello world from bus 4
Hello world from bus 5
Hello world from bus 6
Hello world from bus 7

Message from branches

Hello world from the branch connecting bus 1 to bus 2
Hello world from th e branch connecting bus 2 to bus 3
Hello world from the branch connecting bus 3 to bus 4
Hello world from the branch connecting bus 4 to bus 5
Hello world from the branch connecting bus 5 to bus 6
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Note that this output would be the same, regardiegseeacumber of processors that are used to
run the code. This is in spite of the fact that the distribution of buses and branches may be
different for different numbers of processors.

Resistor Grid Application

The resistor grid is a more complicated exgatpat illustrates how GridPACEan be used to

set up equations describing a physical system and then solve the system using a linear solver.
The physical system is a rectangular gvith resistors connecting all the nodes. Two nodes are
chosen to be set fixed potentials, these then drive currents through the rest of the network
resulting in different currents on the individual branches and different voltages on the different
buses (nodes). The system is illustrated schematically in Figure 12.

Figure 12 A schematidiagramof a simple resistor grid network. The buses (nodes) in blue are
set at fixed external voltages, the remaining bus voltages and branch currents are calculated by
the application.

The topology and choice of nodes hetdixed potential is determined by the network

configuration file, as are the values of the resistance on each of the bramehsgstem is
described by a set of coupled equations repre
the nodesthatisot hel d at a fixed potential. Kirkoff¢
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whereQ is the current flowing between nodesndf and | is the set of nodes connected
directtytoo. Thi s current caw be found from Ohmdés |
W W

0
Y

Wherew andw are the voltage potentials on nodeand! and’Y is the resistance on the

branch connecting nodesandf . Pl ugging the expression for th
law givesthe equation
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The unknowns in this system are the potentials Ki r kof f 6s | aw applies t
not have an applied value of the potaihiThe nodes that do have a fixed potential appear as part

of the right hand side vector. Assuming that any node with dixed value of the potential is

attached to at most one fixed node, then tieelement of the right hand side vector is

@

Y

wherew), is the value of the fixed potential on nddand| is attached tp . If| is not attached
toT , then the element is zerbhevoltages can be evaluated by solving the matrix equation

a0 ®

The voltage veor and right hand side have already been discu$$edmatrix elements have
the form

Y

« P -
0] TEI/ET

With this background, we can talk about the implementation of the resistor grid applica

Much of the basic structure of the classes has already been discuse previous example of
Al |l o worl do, so we wil!/ | i mi tRGBugdassénhevite s t o d
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from theBaseBusComponent class and implements the follavg functions (in addition to
the constructor and destructor)

void load(const boost::shared_ptr
<gridpack::component::DataCollection> &data);

bool isLead() const;

double voltage() const;

bool matrixDiagSize(int *isize, int *jsize) const;

bool matrixDiagVa lues(ComplexType *values);

bool vectorSize(int *isize) const;

bool vectorValues(ComplexType *values);

void setValues(gridpack::ComplexType *values);

int getXCBufSize();

void setXCBuf();

bool serialWrite(char *string, const int bufsize,
const char *signal = NULL);

In addition, theRGBusclass has thregrivate members

bool p_lead,;
double *p_voltage;
double p_v;

The variablep_lead keeps track of whether a bus has a fixed voltage appliédimoorder to
correctly calculate the currents, it is necessamxchange voltages at the end of the calculation.
The voltages at each bus are stored in an exchange buffer that can be accessed by the pointer
p_voltage . The voltages in the external PSS/E file are read in before the exchange buffer is
allocated, so to ake sure there is a variable to store the value, the vapablés also included

as a private membedn addition to implementinpad andserialWrite , theRGBusclass
implements several functions in th&atVecinterface  , as well as two functions that are

unigue to this class.

Similarly, theRGBranch class implements the functions

void load(const boost::shared_ptr
<gridpack::component::DataCollection> &data);
double resistance(void) const;
bool matrixForwardSize(int *isize, int *jsize) const;
bool matrix ReverseSize(int *isize, int *jsize) const;
bool matrixForwardValues(ComplexType *values);
bool matrixReverseValues(ComplexType *values);
bool serialWrite(char *string, const int bufsize,
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const char *signal = NULL);
and has the private member
double p_res istance;
TheRGBusload method has the implementation

void gridpack::resistor_grid::RGBus::load(const
boost::shared_ptr<gridpack::component::DataCollection> &data)

{
int type;
data - >getValue(BUS_TYPE,&type);
if (type == 2) {
p_lead = true;
data - >getValue(BUS_BASEKV,&p_V);
}
}

The PSS/E file that is used to run this application has been configured so that the bus type
parameter is set to 2 if the bus has a fixed voltage and the value of the voltage is stored in the
BUS_ BASEKWariable. The private membpr lead is initialized to false in thRGBus
constructor ang_V is initialized to zero. In thebad method, the bus type is assigned from the
BUS_TYPEvariable in the data collection. If it is 2, the bus has a fixed value giotleatial and
p_lead is setto true. fie value op_v is assigned to whatever is stored in 8¢S BASEKV
variablewhen the bus type is Zhe contents gb_v will eventually be mapped fo _voltage

once the exchange buffers are allocated.

Theload function forRGBranch simply assigns the data collection variaBBRANCH_Ro the
private membep_resistance

void gridpack::resistor_grid::RGBranch::load(
const boost::shared_ptr
<gridpack::component::DataCollection> &data)

{
data - >getValue(BRANCH_R&p_resistance,0);

}

Once the bus and branch private members have been set using the load methods, the values can
be recovered by other objects using the accessiogad , voltage , andresistance

These functions are used in the math interface implememgatiocalculate values of the matrix
elemeants and right hand side vectors and have the relatively simple forms
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bool gridpack::resistor_grid::RGBus::isLead() const

{
return p_lead;
}
double gridpack::resistor_grid::RGBus::voltage() const
{
return *p_vol tage;
}
double gridpack::resistor_grid::RGBranch::resistance(void) const
{
return p_resistance,;
}

Note that thevoltage function is returning the contents pfvoltage , which will contain
up-to-date values of the voltage once the calculation begins.

Thediagonal matrix blockoutines in the bus class have the implementations

bool gridpack::resistor_grid::RGBus::matrixDiagSize(int *isize,
int *jsize) const
{
if (Ip_lead) {
*isize = 1;
*size = 1;
return true;
} else {
return false;

}
}

bool gridpack::resistor_grid::RGBus::matrixDiagValues(
ComplexType *values)
{
if ('p_lead) {
gridpack::ComplexType ret(0.0,0.0);
std::vector<boost::shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);
int size = branc hes.size();
inti;
for (i=0; i<size; i++) {
gridpack::resistor_grid::RGBranch *branch
= dynamic_cast<gridpack::resistor_grid::RGBranch*>
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(branchesJi].get());
ret += 1.0/branch - >resistance();
}
values[0] = ret;
return true;
} else {
return false;
}
}

ThematrixDiagSize routine returns a single element in tredues array if the bus is not a

lead with a fixed voltage, ognwise it returns false and there are no values indhees array.
ThematrixDia gValues function sets the first element of thelues array equal to the

sum of the reciprocal of the resistances on all the attached branches, if the bus is not a lead. To
calculate this quantity, it starts by calling gietNeighborBranches function to gt a list of
pointers to attached branches. These pointers are all dBaggComponent , so they need to

be cast to pointers of tyg@GBranch before functions likeesistance  can be called on
them.This is done by first calling thget function on theshared_ptr to the

BaseComponent object to get dare pointer to the neighboring branch and then doing a
dynamic cast to a pointer of typ&Branch . The resistance method can now by called on the
RGBranch pointer to get the resistance of thranch and use ib calculateahe contribution to

the diagonal matrix element. This valsassigned toalues[0] . If the bus is a lead, then no
values are calculated and the function returns filgealso worth noting that this function will

only be called on busekat are local to the process, so each bus that evaluates a diagonal matrix
element will have a complete set of branches attachedTioistis not the case for ghost buses.
These havenly one branch attached to them, no matter how many branches dnedéibeit in

the original network

The oftdiagonal elements are calculated by the branch components in the functions
matrixForwardSize , matrixReverseSize , matrixForwardValues , and
matrixReverseValues . The matrix3 for the resistor grid problem is completely

symmetric, so in this case, the forward and reverse calculations are identical. For realistic power
problems, this is not generally true, and the forward and reverse functions will have different
implementains. The forward functions are described below, the implementation of the reverse
functions is identical. The branch forward size and value functions are

bool gridpack::resistor_grid::RGBranch::matrixForwardSize(
int *isize, int *jsize) const
{
gridpa ck::resistor_grid::RGBus *busl
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= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get());
gridpack::resistor_grid::RGBus *bus2

= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get());
if lbusl ->isLead() && 'bus2 ->isLead()) {

*isize = 1,

*|size = 1,

return true;
}else {

return false;

}
}

bool gridpack::resistor_grid::RGBranch::matrixForwardValues(
ComplexType *values)
{
gridpack::resistor_grid::RGBus *busl
= dynamic_cast<gridpack::resistor_grid::RGB us*>(getBusl().get());
gridpack::resistor_grid::RGBus *bus2
= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get());
if ('lbusl ->isLead() && !lbus2 - >isLead()) {
values[0] = - 1.0/p_resistance;
return true;
} else {
return false;

}
}

Before these functions can calculate return values, they must first determine if one of the buses at
either end of the brech is a lead bus. To do this, the functionsneed get poi nters to
and At oo buses at Theycanhkdethis tiwough trgetfBust lad b r anc h.
getBus2 calls in theBaseBranchComponent class which return pointers of type

BaseComponent . These pointers can then be converteéd@Buspointers by a dynamic cast.

TheisLead functions can be called to find out itkeer bus is a lead bus. If neither bus is a lead

bus, the size of the etfiagonal block is returned as a 1x1 matrix and theliaifonal matrix

element is calculated and returnedratues[0] . Otherwise both functions return false to

indicate that theresino contribution to the matrix from this branch.

In addition to calculating values of the matbixit is also necessary to set up the right hand side
vector. This is done via the functiomsctorSize  andvectorValues  defined on the buses.
Only buses that are not lead buses contribute to the right hand side vector. On the other hand, the
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only nonzero values in the right hand side vector come from lead buses that are attached to non
lead buses. TheectorSize  function has the implementation

bool gridpack::resistor_grid::RGBus::vectorSize(int *isize) const
{
if ('p_lead) {
*isize = 1,
return true;
}else {
return false;

}
}

If a bus is not a lead bus, it contributes a single value, otherwise it does not and the function
returns false. TheectorValues  function is a bit more complicated. It has the form

bool gridpack::resistor_grid::RG Bus::vectorValues(ComplexType *values)
{
if (Ip_lead) {
std::vector<boost::shared_ptr<BaseComponent> > branches;
getNeighborBranches(branches);
int size = branches.size();

inti;
gridpack::ComplexType ret(0.0,0.0);
for (i=0; i<siz e; i++) {

gridpack::resistor_grid::RGBranch *branch
= dynamic_cast<gridpack::resistor_grid::RGBranch*>
(branchesyi].get());
gridpack::resistor_grid::RGBus *busl
= dynamic_cast<gridpack::resistor_grid::RGBus*>
(branch ->getBus1().get());
gridpack::resistor_grid::RGBus *bus2
= dynamic_cast<gridpack::resistor_grid::RGBus*>
(branch ->getBus2().get());

if (busl != this && busl - >isLead()) {

ret += busl ->voltage()/branch - >resistanc e();
} else if (bus2 != this && bus2 - >isLead()) {

ret += bus2 ->voltage()/branch - >resistance();
}

}

values[0] = ret;
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return true;
} else {
return false;

}
}

ThevectorValues  function starts by getting a list of bramshthat are attached to the calling

bus and then looping over the liBbinters to each of the branches, as well as the buses at each
end of the branch are obtained usinggetBusl andgetBus2 functions. It is still necessary

to determine which end df¢ branch is opposite the calling bus and this can be done by
checking the conditionsus1 != this andbus?2 != this . One of these will be true for

the bus opposite the calling bus. If this bus is also a lead bus, then a contribution is added to the
right hand side vector element. The contribution can be calculated by getting the value of the
fixed voltage from the lead bus and dividing it by the resistance of the branch. These values can
be obtained by calling the busltage function and the branatesista nce function. The
*p_voltage value of the calling bus is not used. If the calling buslesad busthen the

function returns false.

The lastfunctionrelated to vectorthat is implemented in thdatVeclinterface is the
setValues function

void gridpack::r esistor_grid::RGBus::setValues(
gridpack::ComplexType *values)
{
if (Ip_lead) {
p_voltage = real(values[0]);
}
}

Once the voltages have been calculated by sol
some way of pushing these back onlibses so they can be written to output. The results of the

linear solver are returned in thalues array. The number of values in this array corresponds

to the number of values contributed to the right hand side vector (in this case 1 if thadias is

lead). Thus, the value is assigned to the intggnabltage variable if the bus is not a lead

bus.This function will be cakdby all buses as part of tineapToBus function in the

BusVectorMap .

In order to correctly calculate the current on all branétyesxport to standard out, it is
necessary to have #p-date values of the voltage on all buses, including ghost buses. This
requires a data exchange at the end of the calculation. To enable this exchange, the
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getXCBuUfSize and setXCBuf functions must beénplemented in th®@GBusclass. These
functions have the form

int gridpack::resistor_grid::RGBus::getXCBufSize()
{

return sizeof(double);

}
void gridpack::resistor_grid::RGBus::setXCBuf(void *buf)
{

p_voltage = static_cast<double*>(buf);

*p_voltage =p_v;

}

The only variable that needs to be exchange is the value of the potergetiX&BufSize
returns the number of bytes in a single double precision variableseTKEBuUf function
assigns the buffer pointed to by the varidilé to the internal dta membep_voltage . At
the same time, it initializes the contentgofoltage to the variablg v, which contains the
voltage read in from the external PSS/E file.

TheserialWrite functions on the buses and branches are used to write the voltages and
currents on all buses and branches to standard outpus€efiadVrite function on the buses
has the form

bool gridpack::resistor_grid::RGBus::serialWrite(char *string,
const int bufsize, const char *signal)

{
if (p_lead) {
sprintf(string,"Voltage on bus %d: %12.6f (lead) \n",
getOriginallindex(), *p_voltage);
} else {
sprintf(string,"Voltage on bus %d: %12.6f \n",
getOriginallindex(), *p_voltage);
}
return true;
}
All buses return a string so the function always returns true pfintout consists of the bus
index obtained with thgetOriginalindex function,and the value of the voltage on the

bus. Lead buses are marked in the output, indicétisighe voltage ishe same as thapecified
in the input file, the remainingveltges ar e cal cul ated by solving
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branches, the serialWrite function is used to calcaateprintthe current flowing across each
branch

bool gridpack::resistor_grid::RGBranch::serialWrite(char *string,
const int
bufsize, const char *signal)

gridpack::resistor_grid::RGBus *busl
= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus1().get());
gridpack::resistor_grid::RGBus *bus2
= dynamic_cast<gridpack::resistor_grid::RGBus*>(getBus2().get());
double vl = busl ->voltage();
double v2 = bus2 ->voltage();
double icur = (v1 - v2)/p_resistance;
sprintf(string,"Current on line from bus %d to %d is: %12.6f \n",
busl- >getOriginalindex(),bus2 - >getOriginallndex(),icur);
return true;

}

All branches report the cuant flowing through them, so this function also returns true for all
branches. To calculate the current, it is necessary to get the value of thesailtagte ends of
the branch using methods already described and then calculate the current by tigiding
difference in voltages by the resistance of ttenbh. The print line prints the current and
uniguely identifies each branch by including the IDs of the buses at either end.

The factory class for resistor grid application only uses functionalityeiiBaseFactory class and
has the simple form

class RGFactory
: public gridpack::factory::BaseFactory<RGNetwork> {
public:
RGFactory(boost::shared_ptr<RGNetwork> network)
. gridpack::factory::BaseFactory<RGNetwork>(network)
{
}
~RGactory() {}

h

Again, theBaseFactory class from whiclRGFactory inherits is initialized by passing the
network argument through the constructor. The declaration for this class is in the file
rg_factory.hpp . There is no correspondingpp file.
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TheRGAppclass declaration is also simple and consists of the functions

class RGApp
{
public:
RGApp(void);
~RGApp(void);
void execute(int argc, char** argv);

h

Again, arguments from the top level main program can be passed through to the execute
function, which is responsible for implementing the actual resistor grid calculdti@RGApp
class declaration is contained in tigeapp.hpp file. The implementation is contad in the
rg_app.cpp file. The onlycomplicated function in the implementatianexecute, which
consists of

void gridpack::resistor_grid::RGApp::execute(int argc, char** argv)
{
/l read configuration file
gridpack::parallel::Communicator world,;
gridpack::utility::Configuration *config =
gridpack::utility::Configuration::con figuration();
config ->open("input.xml",world);
gridpack::utility::Configuration::CursorPtr cursor;
cursor = config - >getCursor("Configuration.ResistorGrid");

/I create network and read in external PTI file
/I with network configuration
boost::s hared_ptr<RGNetwork> network(new RGNetwork(world));
gridpack::parser::PTI23_parser<RGNetwork> parser(network);
std::string filename;
if (lcursor - >get("networkConfiguration”,&filename)) {

filename = "small.raw";

}

parser.parse(filename.c_str() );

/I partition network
network - >partition();

Il create factory and load parameters from input
/I file to network components
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gridpack::resistor_grid::RGFactory factory(network);
factory.load();

/I set network components using factory and s et up exchange
/I of voltages between buses

factory.setComponents();

factory.setExchange();

network - >initBusUpdate();

/I create mapper to generate voltage matrix
gridpack::mapper::FullMatrixMap<RGNetwork> vMap(network);
boost::shared_ptr<gri dpack::math::Matrix> V = vMap.mapToMatrix();

/I create mapper to generate RHS vector
gridpack::mapper::BusVectorMap<RGNetwork> rMap(network);
boost::shared_ptr<gridpack::math::Vector> R = rMap.mapToVector();

Il create solution vector by cloning R
boost::shared_ptr<gridpack::math::Vector> X(R - >clone());

Il create linear solver and solve equations
gridpack::math::LinearSolver solver(*V);
solver.configure(cursor);

solver.solve(*R, *X);

/I push solution back on to buses
rMap.mapToBus(X);

/I exchange voltages so that all buses have correct values. This
/[ guarantees that current calculations on each branch are correct
network - >updateBuses();

/I ¢ reate serial 1O object s to export data
gridpack::serial_io::SerialBuslO<RGNetwork > buslO(128,network);
char ioBuf[128];

buslO.header(" \nVoltages on buses \n\n");

buslO.write();

gridpack::serial_io::SerialBranchlO<RGNetwork>
branchlO(128,network);
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branchlO.header(" \ nCurrent on branches \n\n");
branchlO.write();

}

Thebegnningofther esi st or grid applicatildm iwDrmare i mon
uses an input file to control the properties of the linear solver that is used to solve current
equationsTo read in the input file, the application starts by cregaéirommunicator on the set

of all processors. Only one configuration object is available to the application aaxkthae

function gets a pointer to this instance by calling the static function

Configuration::configuration() . This pointer can then beagsto read in the input
filinputxmh o0, acr oss tédommunicatoneords esiag theapen method.
All processors now have access to the contentgpot.xml . The input file contains two

pieces of information, the name of the PSS/E forma#sedtor grid configuration file and the
paameters for the linear solver. The input file has the form

<?xml version="1.0" encoding="utf -8"?>
<Configuration>
<ResistorGrid>
<networkConfiguration>sm all.raw </networkConfiguration>
<LinearSolver>
<PETScOptions>
- ksp_view
- ksp_type richardson
- pc_type lu
- pc_factor_mat_solver_package superlu_dist
-ksp_max_it1
</PETScOptions>
</LinearSolver>
</ResistorGrid>
</Configuration>

The resistor gridile name can be obtained by getting a cursor pointer that is pointed at the
ResistorGrid block in the inpufile by using thegetCursor  functionand then usintghe

get function to retrieve the actual file name located inrtéevorkConfiguration field.

fno file is specified i n t Ismealram pou.t Adte ctkh e tshaeme
time, anRGNetwork object is instantiated and used to initialize on instance of

PTI23_parser . This can then read in the resistor grid configuration file usingahsep

function.

At this point, all buses and branches have been created, but they may not be distributed in a way
that supports computation. The netwpgdtition function is called to redistribute the

142



network so that each process has maximal connectitwsédre components located on the
process and minimal connections to components located on other processes. The ghost buses and
branches are also added by plaetition function.

After partitioning, arRGFactory object is created and the base claasl mettod is called to
initialize the internal data elements on each bus and branch in the network. This function
initializes both locally held components as well as ghost components, so there is no need for a
data exchange to guarantee that all components doedspe. The factory also calls the base
classsetComponents method, which determines several types of internal indices that are
used to set up calculationghe buffers needed to exchange datthe end of the calculati@me

set up by a call to the fawry setExchange method. Additional internal data structures needed
for the data exchange between buses are created by calling the rnetiBusUpdate

method. No data exchanges are needed between branch components.

The next step in the algorithm is teeate the matri®, the right hand side vector and a vector to
contain the solution. Two separate mappers are needed, one for theSnaatiithe other for the
right hand side vector. For the matrix, the code creates an instanEeltflatrixMap  that

is initialized with the resistor grid netwarkhemapToMatrix functionis called tocreate the
matrix V. The right hand side vector is created by creating instancBus\A&ectorMap and
using themapToVector function to create the vect® The solutimm vectorX does not need to
be initialized to any particular value, it just needs to be the same s$fz=oasis created by
havingR call theclone method in thé/ector class and using the result to initialiXen the
Vector class constructor.

OnceV, R, andX are available, the equations can be solved using a linear solver. The linear
solver is created by initializing an instanceLofearSolver  with the matrixV. The solver
classconfigure  method can be used to transfer solver parameténg iinear Solver

block ininput.xml  to the solver. Theursor pointer that is taken as an argument to
configure is already pointing to thResistorGrid block in the input file, saonfigure

will pick up any parameters inlanearSolver  block within theResistorGrid block.

After configuring the solver, the solution vector can be obtained by callirgpthe method
and the resulting voltages are pushed back to buses usimgfiimBus method in the
BusVectorMap class.

After callingmapToBus, all locally held buses ka correct values of the voltage, but ghost

buses still have their initial values. To correct the voltages on ghost buses, it is necessary to call
the networkupdateBuses function. The bufferp_voltage now contain correct values of

the voltage on all buse

The only remaining step is to write the results to standard output. The voltages are written by
creatingan instance oberialBuslO . The maximum buffer size is set to 128 characters,

143



which is enough to hold any lines of output coming from the busesadem labeling the bus

output is written to standard out using treader method and then bus voltages are written by
callingwrite . Similarly, output from the branches can be written by creating an instance of
SerialBranchlO , writing a header using theeader method and then callingrite

Since only one type of output comes from the branches and buses, no character string is passed
in as arguments to thverite  functions. Theexecute function has now completed all tasks
associated with solving the resisgyid problem and passes control back to the main calling
program.

The main calling program is relatively simple and consists of the code

i nt main(int argc, char **argv)

{
gridpack::parallel::Environment env(argc, a rgv);
gridpack::math::Initialize();
gridpack::resistor_grid::RGApp app;
app.execute(argc, argv);
gridpack::math::Finalize();
return O;

}

The parallel computing environment is set up by creating an instaoceviobnment . The
computing environment is also cleaned up at the end afabalation when the destructor for
this object is called. The math libraries are initialized by a call to the Biai#tize

method and cleaned up at the end of the calculation by a €aflatize . The only remaining
calls are to create an instandean RGAppand call itsexecute method.

A portion of the output from the resistor grid calculation is the following

GridPACK math module configured on 8 processors
Voltages on buses

Voltage on bus 1:  1.000000 (lead)
Voltage on bus 2:  0.66795 8
Voltage on bus 3:  0.467469
Voltage on bus 4:  0.329598
Voltage on bus 5:  0.227289
Voltage on bus 6:  0.148733
Voltage on bus 7:  0.088491
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Current on branches

Current on line frombus 1 to 2 is: 20.000000
Current on line from bu s2to3is: 4.009776
Currenton line frombus 3to4is: 2.757436
Currenton line frombus4to5is: 2.046167
Current on line from bus 5to 6is: 4.545785

The first line is written by the call to the math librdmytialize functionand reports on the
number of processors being used in the calculation. This information is useful in keeping track of
the performance characteristics of different calculatiSosneinformation from the solverns

usually printed after thisAt the end othe calculation, the values of the voltages on the buses are
printed out and then the current on each of the branches. The buses with externally applied
voltages are also identified in the output.

Contingency Analysis

The contingency analysis applicatiaill be described in detail since it provides a relatively
compact demonstration of some of the advanced features of GridPA&@Kapplication is built
entirely around the power flow module, so it has no network component classes of its own. The
main fundionality is located in th€ADriver class that consists of two methods (other than the
constructor and destructor). One function is used to read in a list of contingencies and convert
them to a correspondir@ontingency data structure and the other functiexecutes the
contingency analysis calculation. These two functions will be discussed in detail.

The function for reading in the contingencies and converting them to a list of Contingency data
structures has the form

std::vector<gridpack::powerflow::Cont ingency> getContingencies(
gridpack::utility::Configuration::ChildCursors contingencies)

TheContingency daa structures are defined in as part of the power flow module and exist in
thegridpack::powerflow namespace. The list of cursors representeddégdhtingencies
variable is obtained by the calling program before calling thistion. The function itself is

std::vector<gridpack::powerflow::Contingency> ret;
int size = contingencies.size();
int i, idx;
gridpack::utility::StringUtil s utils;
for (idx = O; idx < size; idx++) {
std::string ca_type;
contingencies[idx] - >get("contingencyType",&ca_type);
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std::string ca_name;
contingencies[idx] - >get("contingencyName",&ca_name);
if (ca_type == "Line") {

std::string buses;

contingencies[idx] - >get("contingencyLineBuses",&buses);
std::string names;
contingencies[idx] - >get("c ontingencyLineNames",&names);

std::v ector<std::string> string_vec =
utils.blankTokenizer(buses);
std::vector<int> bu s_ids;
for (i=0; i<string_vec.size(); i++) {
bus_ids.push_back(atoi(string_vec[i].c_str()));
}
string_vec.clear();
string_vec = utils.blankTokenizer(names);
std:: vector<std::string> line_names;
for (i=0; i<string _vec.size(); i++) {
line_names.push_back(utils.clean2Char(string_vecli]));
}
if (bus_ids.s ize() == 2*line_names.size()) {
gridpack::powerflow::Contingency contingency;
contingency.p_name = ca_name;
contingency.p_ type = Branch;
inti;
for (i = 0; i < line_names.size(); i++) {
contingency.p_from.push_back(bus_ids[2*i]);
contingency.p_to.push_back(bus_ids[2*i+1]);
contingency.p_ckt.push_back(line_names]i]);
cont ingency.p_savelineStatus.push_back(true);

}

ret.push_back(contingency);
}
} else if (ca_type == "Generator") {
std::string buses;
contingencies[idx] - >get("contingencyBuses",&buses);
std::string gens;
contin gencies[idx] ->get( "contingencyGenerators",&gens);
std::vector<std::string> string_vec =
utils.blankTokenizer(buses);
std::vector<int> bus_ids;
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for (i=0; i<string_vec.size(); i++) {
bus_ids.push_back(atoi(string_veci].c_ str()));
}
string_vec.clear();
string_vec = utils.blankTokenizer(gens);
st d::vector<std::string> gen_ids;
for (i=0; i<string_vec.size(); i++) {
gen_ids.push_back(utils.clean2Char(string_vec|i]));
}
if (bus_ ids.size() == gen_ids.size()) {
gridpack::powerflow::Contingency contingency;
contingency.p_name = ca_nhame;
contingency.p_type = Generator;
inti;
for (i = 0; i < bus_ids.size(); i++) {
contingency.p_busid.  push_back(bus_idsJi]);
contingency.p_genid.push_back(gen_ids][i]);
contingency.p_saveGenStatus.push_back(true);
}
ret.push_back(contingency);
}
}
}

return ret;
This function is designed to parse input of fibren

<?xml version="1.0" encoding="utf -8"?>
<ContingencyList>
<Contingency_analysis>
<Contingencies>
<Contingency>
<contingencyType>Line</contingencyType>
<contingencyName>CTG1</contingencyName>
<contingencyLineBuses>1 3 14</contingencyLineBuses>
<contingencyLineNames> B1 </contingencyLineNames>
</Contingency>
<Contingency>
<contingencyType>Generator</contingencyType>
<contingencyName>CTG2</contingencyName>
<contingencyBuses> 2 </contingencyBuses>
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<contingencyGenerators>1 </contingencyGenerators>
</Contingency>
</Contingencies>
</Contingency_analysis>
</ContingencyList>

Thecontingencies list in the argument consists of a vectoGainfiguration module
cursas, each of which is pointing to one of tentingency  blocks in this input.

The first few lines are used to create the return list, determine the number of contingencies in the
ChildCursors  list and create &tringUtils object that can be used to parse input.

The function then loops over all cursors in tieatingencies list. All contingencies should
contain thecontinge ncyType andcontingencyName field, so these values are obtained
using the get function from th@onfiguration module. The type can leei t hirerd for
fiGenerator O . Based on the type, the fulnedi on bi f ul
branch looks for the strings correspondingaatingencyLineBuses and
contingencyLineNames and assigns these to the string variableses andnames. More

than one transmission element may be involved in the contingenc$tiihgUtils

blankTokenizer function is used to parse theses string into a list of strings that can then

be converted to a list of integers. These represent the original inditeskafses at each end of

the branch. Theames string isalso converted to a lisepresentinghe character tag identifying

the individual transmission element between the two buses. This is then reformatted to a
consistent Zharacter format using ti&ringUtils clean2Char function. The string
vectorstring_vec is used to hold the results frdolankTokenizer , and the final list of
integers and character tags are stored in the variabéesds andline_names . Each
transmission element is characterizgdwo buses and a character tag, so the number of bus IDs
should be twice the number of tags. If this condition is met, then the contingency is assumed to
be well formed and &€ontingency  struct is created for it. After copying the data stored in the
variablesca_type ,ca_name, bus_ids antine_names , this contingency is added to the

return variableet .

T h &engrator 6 br anch i s si mi ITherstringointhehe ALIi ned br ar
contingencyBuses  andcontingencyGenerators fields are copied into the string

varnablesbuses andgens . These are then converted into a list of bus IDs and generator tags

using the blankTokenizer function and stored in the list bus_ids and gen_ids. A generator is
characterized by the original index of the bus that it is associatedndtthe Zharacter

generator tag so the size of thes_ids andgen_ids vectors must be equal. If this condition

is met, then £ontingency struct is created, the contingency data is copied to it and the struct

is added to the return variabiet .
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After all cursor in contingencies have been processedet@@ontingencies function
returns a list oContingency  structs representing all the contingencies in the original XML
input file.

The execute function starts with the code block

void gridpack::contingen cy_analysis::CADriver::execute(int argc,
char** argv)
{
gridpack ::parallel::Communicator world;
gridpack::utility::CoarseTimer *timer =
gridpack::utility::CoarseTimer::instance();
int t_total = timer - >createCategory("Total Application");
timer - >start(t_total);

gridpack::utility::Configuration *config
= gridpack::utility::Configuration::configuration();
if (argc >= 2 && argv[1] '= NULL) {
char inputfile[256];
sprintf(inputfile,"%s",argv[1]);
config ->open(inputfile,world);
} else{
config - >open("input.xml",world);

}

The user can pass in the name of the input file when they invoke the contingency analysis
application, and this is transmitted via the variablgg andargv in the argument listf an
argument is detectethen the code will try and open a file using the argument as the filename,

ot herwise it will adnputxmé d.heOnmnegutthd iilreputs fcial
processors have access to its contdits section also creates a timing categorythe

calculation and starts the timer. The calCimarseTime::instance returns the timer object

and thecreateCategory cal |l creates a ti mBotal category wit.
Applicaton o6. It al so retur ns darth aafl ikyires tettimer. THei s cat

timer can be started and stopped multiple times for the same category.

The next few lines are used to parse the input file and determine the size of the communicators
that should be used to run individual tasks.

gridpack::utility::Configurat ion::CursorPtr cursor;
cursor = config - >getCursor("Configuration.Contingency_analysis");
int grp_size;
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double Vmin, Vmax;

if (lcursor - >get("groupSize",&grp_size)) {
grp_size = 1,

}

if (lcursor - >get("minVoltage",&Vmin)) {
Vmin = 0.9;

}

if (lcursor - >get("maxVoltage",&Vmax)) {
Vmax = 1.1,

}

gridpack::parallel::Communicator task_comm = world.divide(grp_size);

A CursorPtr is defined and set to point to the contents of@batingency_analysis

block in the input file using thgetC ursor function. This block contains parameters defining
some of the properties of the simulation. HneupSize parameter sets the size of the
communicator on which individual power flow calculations are rdmePmwer flow is not very
scalable in GridPA& and it is usually fastest to run it on one processor so the default value is 1.
TheminVoltage andmaxVoltage parameters are the limits, in p.u., for acceptable voltage
variations on individual buses. Once the group size has been set, the world cortonisica
divided into sub communicators using the divide function. This guarantees that each
subcommunicatorontains at most the number of processes specified ggingSize (one
subcommunicator may contain less than this number). Each process is noftlpaorld
communicator and one subcommunicator.

The next block of code creates a power flow application on each task communicator and
initializes it.

boost::shared_ptr<gridpack::powerflow::PFNetwork>
pf_network(new gridpack::powerflow::PFNetwork(t ask_comm));
gridpack: :powerflow::PFAppModule pf_app;
pf_app. readNetwork(pf_network,config);
pf_app.initialize();
pf_app.s olve();
pf_app.ignoreVoltageViolations(Vmin,Vmax);

The first line creates a power flow network on the task communicatosedoad line creates a
power flow application. TheeadNetwork function assigns the powerflow network (which
currently has nothing in it) to the power flow application, along with the pointer to the
configuration module. The input file is expected to halP®aerflow block that contains
parameters for the power flow application. These include the location of the network
configuration file and the type of solver that idmused. An example of a complete input file is

150



<?xml version="1.0" encoding="utf -8"?>
<Configuration>
<Contingency_analysis>
<contingencyList>contingencies.xml</contingencyList>
<groupSize>2</groupSize>
<maxVoltage>1.1</maxVoltage>
<minVoltage>0.9</minVoltage>
</Contingency_analysis>
<Powerflow>
<networkConfigurat ion>IEEE14 ca.raw </networkConfiguration>
<maxlteration>50</maxlteration>
<tolerance>1.0e - 6</tolerance>
<LinearSolver>
<PETScOptions>
- ksp_type richardson
- pc_type lu
- pc_factor_mat_solver_package superlu_dist
-ksp_max_it1
</PETScOptions>
</LinearSolver>
</Powerflow>
</Configuration>

Note that it has two block§ontingency_analysis andPowerflow . The parameters
describing the contingency calculation and the location of the contingenciesatesllm the

first block and the power flow parameters are located in the second bloaleatiNetwork

function will read in the network configuration file and partition the netwbhlei nitialize
functionis used to initialize the network componentsyrtheDataCollection objects and
assign exchange bufferBhe call tosolve is used to obtain a power solutitmthe base

problem with no contingencieSince all tasks have the same data at this point, the network
solution is duplicated across all sobenunicators. The final call to

ignoreVoltageViolations sets a parameter in each network component that violates the
voltage bounds for base case. These components will be ignored in any subsequent checks for
voltage violations.

The next step is to read inet contingencies and convert these to a list of contingency data
structs.

std::string contingencyfile;
if (lcursor - >get("contingencyList",&contingencyfile)) {
contingencyfile = "contingencies.xml";
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}
bool ok = config - >open(contingencyfile,world );
cursor = config - >getCursor(
"ContingencyList.Contingency_analysis.Contingencies");
gridpack::utility::Configuration::ChildCursors contingencies;
if (cursor) cursor - >children(contingencies);
std::vector<gridpack::powerflow::Contingency>
events =g etContingencies(contingencies);
if (world.rank() == 0) {
int idx;
for (idx = 0; idx < events.size(); idx++) {
printf("Name: %s \ n",events[idx].p_name.c_str());
if (events[idx].p_type == Branch) {

int nlines = events[ idx].p_from.size();
int j;
for (j=0; j<nlines; j++) {
printf(" Line: (from) %d (to) %d (line) \'%s\ "\ n",

events[idx].p_from[j],events[idx].p_to[j],
events[idx].p_ckt[j].c_str());
}
} else if (events[idx].p_type == Generator) {
int nbus = events[idx].p_busid.size();

intj;
for (j=0; j<nbus; j++) {
printf(" Generator: (bus) %d (generator ID) \'%s\ "\ n",
events[idx].p_busid[j],events[idx].p_genid[ jl.c_str());
}
}
}
}
The location of the contingency file is contained ind¢batingencyList field in the input
file. If this field is not present, the code defaults to the file neomtingencies.xml . The

contintency file is then oped using th@pen function in theConfiguration module and a

cursor is set to th€ontingencies  block within this file. TheConfiguration

children  function returns a list of cursor pointers that point to each of the individual
Contingency blocks. ThegetCo ntingencies  function described above parses each of

these blocks and returns a vector of contingency data structs. The contingency list is replicated
on all processors. Process 0 is used to provide a listing of the contingencies to standard output by
looping over theevents vector returned by thgetContingencies function.

152



Once the contingencies have be determined, the code next sets up a task manager on the world
communicator and sets the number of tasks equal to the number of contingencies.

gridpack::pa rallel::TaskManager taskmgr(world);
int ntasks = events.size();
taskmgr.set(ntasks);

The task loop is created by defining a task_id variable and a character string buffer that is used
inside the loop to create messages. The task manager then begimgitaver different tasks.

int task_id;
char sbuf[128];
while (taskmgr.nextTask(task_comm, &task_id)) {
printf("Executing task %d on proce ss %d\ n",task_id,world.rank());

The call tonextTask takes the task communicator as one of its argumerttsesvalue of

task id thatis returned is the same for all processors on the communicator. This guarantees
that each of the processors in this copy of the power flow applicatin is working on the same
contingency. If thaextTask function returns false, éhtasks have been completed and the

code exits from thevhile loop. At the start of the task, the code prints out a statement to
standard out describing which tasks are being executed by each processor.

The next few lines in the task loop are used to @pfe so that the output from each task is
directed to a separate file. This can be used later to examine individual tasks.

sprintf(sbuf,"%s.out",events[task_id].p_name.c_str());
pf_app.open(sbuf);
sprintf(sbuf," \ nRunning task on %d processes \n"jtask_comm.size());
pf_app.writeHeader(sbuf);
if (events[task_id].p_type == Branch) {
int nlines = events[task_id].p_from.size();
int j;
for (j=0; j<nlines; j++) {
sprintf(sbuf,” Line: (from) %d (to) %d (line) \'%s\ "\ n",
events[task_id].p_from[j],events|task_id].p_to[j],
events[task _id].p_ckt[j].c_str());
}
} else if (events[task_id].p_type == Generator) {
int nbus = events[task_id].p_busid.size();
int j;
for (j=0; j<nbu s; j++) {
sprintf(sbuf,” Generator: (bus) %d (generator ID) \'%s\ '\ n",
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events[task_id].p_busid[j],
events[task_id].p_genid[j].c_str());
}

}
pf_app.writeHeader(sbuf);

The first line is used to create a name for the wtuife using the contingency name. The output
from the power flow calculation is then redirected to this file using the poweofemw

function. Next, some information about this particular contingency is written to the file using
some calls to the writkeader method. This includes the number of processors used to calculate
the contingency and the details of the contingency itself.

The remaining lines in the while loop are used to solve the power flow equations.

pf_app.resetVoltages();

pf_app.setC ontingency(events[task_id]);

if (pf_app.solve()) {
pf_app.write();
bool ok = pf_app.checkVoltageViolations(Vmin,Vmax);
ok = ok & pf_app.checkLineOverloadViolations();

if (ok) {
sprintf(sbuf," \ nNo violation for contingenc y %s\ n",
events[task id].p_name.c_str());
} else {
sprintf(sbuf," \ nViolation for contingency %s \n",
events[task id].p_name.c_str());
}
pf_app.print(sbuf);

}
pf_app.unS etContingency(events[task_id]);

pf_app.close();

}
Before doing the calculation, all voltages are returned to the original values defined in the
network configuration file usingesetVoltages . The contingency parameters are set to the

values specified by thiask_id element in thevents list using thesetContingency
method.

The system is then solved using the power #amlve function. If the solution succeeds, the
calculation writes out the voltages and branch power flow values to the outpuf file. The
calculation also checks fooitage violations and line overload violations. The results of these
checks are written to the output file for each power flow calculation. After this is complete, the
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powerflow calculation returns all contingency related parameters to their originas uasing
unSetContingency  and closes the output file. This is repeated until all contingencies in the
event list have been evaluated.

At this point, the contingency application is essentially complete. The remaining lines of code

taskmagr.printStats();

t imer - >stop(t_total);

if (events.size()*grp_size >= world.size()) {
timer - >dump();

}

are used to print out a list of how many tasks were evaluated on each processor and to stop the
t i mi ngTotaffApplicaten i 0 cat e g o r gumpmethc wit printrstatistics

on the amount of time spent in the total application as well as reporting timings inside the power
flow application.The check on thdump call is to verify that all processors have participated in

at least one power flow calculation.

Fortran 2003 Interface

GridPACK has developed a Fortran interface that can be used to access most of the functionality
in the framework module§ he Fortrannterface makes extensive use of the obpernted

features in Fortrgrso a compiler that suppsthe Fortran 2003tandardnust be used if

creating Faran applicationsThe Fortran compiler must also support the iso_c_binding module,
but this will usually be available if the compiler supports Fortran 20I@3t recent compilers
support Fortran 2003 working powerflow application written entirely in Fortran has been
included in the current release and demonstrates how to use the Fortran interface. The Fortran
implementation is very similar to the C++ interface and most of the C++ documentatii@s app

to the corresponding Fortran functionality. The remainder of this section will highlight the
important differences between the C++ and Fortran interfaces.

Because Fortran does not have any support for templates (that we kntihe &9rtran interface
cannot support multiple different kinds of networks within a single applicaftus.means that
only one bus and one branch class can be present in an appleatiembus and branch classes
must support all possible types of behavior. It is stilsfime to have more than one network in
an application, but all networks must be of the same type.

The bus and branch classes in the Fortran interface are represented by the Fortran derived types
application_bus andapplication_branch . These types have prexures bound to

them, agvell as internal data elements. These types are defined in the Fortran file
component_template.F90 file that is located in théortran/component directory.

The application bus and branch classes candsant by modifying a copyf o
component_template.F90 . The functions in the mathector interface and the component
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base classes are all defined in this, Blleng with default implementations for these functions.
Additional data elements and procedures can be added to the buasmritddata types to create
appropriate functionality for specific problems.

A brief overview of theapplication_bus type in thecomponent_template.F90 file

is provided here. Similar considerations apply toapplication_branch type. To use the
component_t emplate.FO0 file it should first be copied to the directory where the
application source code resides and renamed to something appropriate. We will use the name
app_component.F90 . Inside the component file, the Fortran types_xc_data
branch_xc_data , application_bus , application_branch are definedas part of
theapplication_components module These are the only typthat need concern the
application developer. There are atam types defined in this file called

application_bus_wrapper andapplication_b ranch_wrapper . These are only

used internally but must be defined in this file. They should not be modified. There is a line at
the bottom of th@pp_component.F90 file that includes an external file

component_inc.F90 . This file contains many functions trere required by the interfac

and must be included theapplication_components module. However, these functions
should not be modified by the user so to avoid possible errors and to simplify the file somewhat
these functions are put in arclude file

Theapplication_bus type has four parts. These consist of 1) applicatjmercific data

elements, 2) data elements that must be defined in order for the component to interact with rest
of the framework, 3) applicatiespecific functions that are defineg the user and 4) framework
functions that must be included in the component. The framework functions all have base
implementations can be modified to suit the application. The only data elements that must be
included in theapplication_bus type is a varible of typebus_xc_data and a pointer to

this variable. Thédus_xc_data type will be discussed further below and represents all data
that might need to be exchanged in a bus update.

The framework functions are directly analogous to the functions defindoef@++

implementation and users should refer to the documentation above to find out how these
functions work. This section will primarily discuss differences between the Fortran and C++
interfaces. The Fortran compilers do not have the same-mamglirg capabilities as C++ so all
function names are preceded by eithbus_ or branch_  to distinguish between bus and

branch versions of the functions. A few functions only appear in the bus class or the branch class
and do not necessarily need this prabut to be consistent, this convention is used for all

functions.

Functions that are bound to tapplication_bus type are already listed in the
component_template.F90 . These functions consist of both a declaration within the
application_bus type and a furteon or subroutine implementation within the
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application_components module. The declarations within tapplication_bus
type (after theontains  keyword) have the form

procedure::bus_matrix_diag_size
procedure::bus_matrix_diag_values
procedure: :bus_matrix_forward_size
procedure::bus_matrix_reverse_size

Theprocedure keyword distinguishes a function or subroutine bound to the Fortran type from
a piece of data (which is declared as a data type using oneiofrthgic Fortran datdypes or a
Fortran type declaration).

After the type declarations within tla@plications_components module, there is a

contains  keyword followed by the subroutine and function implementations for all the

declared procedureghe original implementations thecomponent_template.F90 file

are just stubs for these functions and typica
bus_matrix_diag_size function which originally has the implementation

logical function bus_matrix_diag_size(bus, isize, jsize)
implic it none
class(application_bus), intent(in) :: bus
integer, intent(out) :: isize, jsize
bus_matrix_diag_size = .false.
return

end function bus_matrix_diag_size

The initial implementation just returns false if this function is invoked anééd n 6t set t he
variablegsize orjsize . Notethefirst item in the argument list. This is declared as being of
typeclass(application_bus) with intent in. All functions and subroutines that are

bound to thepplication_bus type must have this argumenteemf they do not have any

other arguments. This argument provides a mechanism for accessing data items or functions that
are related to a particulapplication_bus instance.

To see how the bus argument is used in actual practice, an implementatierfuidtion in a
power flow application is shown below

logical function bus_matrix_diag_size(bus, isize, jsize)
implicit none
class(application_bus), intent(in) :: bus
integer, intent(out) :: isize, jsize
isize =1
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jsize =1
bus_marix_diag_size = .true.

if ( bus%p_modeq.JACOBIAN) then

) then

) then

if (. not. bus%bus_is_isolated()
isize =2
jsize =2
bus_matrix_diag_size = .true.
else
bus_matrix_diag_size = .false.
endif
elseif ( bus%p_mode.eq.YBUypthen
if (.not. bus%bus_is_isolated()
bus_matrix_diag_size = .true.
isize =1
jsize =1
else
bus_matrix_diag_size = .false.
endif
return
endif
return

end function bus_ma trix_diag_size

Theapplication_bus
userspecified functiorbus_is_isolated

access this data and this function inside a-typend procedure,sue
argument

Thebusvariabl e in

and refers back ttheapplication_bus
bus_matrix_diag_size
thevariabldous i n it s

t he

implementation for poweditow contains the variablp_mode and a

(this is declared as a ty®und procedure). To

t he % osy mawml|l A
this ®t pos naeri ng IC

instance that made the original call to

. Although thebus_is_isolated
argument |

st

funcion implementation has

it doesnot need

making a call from aapplication_bus

case. Similarlya call to théous_matrix_diag_size

instance. Théus argument is assoed in this
function, which has additional

arguments, would have the form

ok = bus%bus_matrix_diag_size(isize,jsize)

Following this syntax, it is possible to construct a complete set of functions for an arbitrary
application. Additional applicatieepecific functios can be added to the component types by
declaring them as procedures within the type and adding their implementations to the

application_components module.
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There are a few procedures in both the bus and branch types that should not be modified. No
stubs or these appear in the component_template.F90 file. For the application_bus type, these
procedures are

procedure::bus_get_neighbor_branch
procedure::bus_get_neighbor_bus
procedure::bus_get_xc_buf_size
procedure::bus_get xc_buf

For the apptation_branch type, the procedures are

procedure::branch_get busl
procedure::branch_get bus2
procedure::branch_get xc_buf_size
procedure::branch_get xc_buf

These procedures are required by other parts of the framework, but should noiftezlngd
the userSome other procedures are defined in the base class and do not appear as procedure
declarations in application_bus and application_branch types. These procedures include

procedure:: bus_get _num_neighbors
procedure:: bus_set referen ce_bus
procedure ::bus_get reference_bus
procedure::bus_get_original_index
procedure ::bus_compare

for buses and

procedure ::branch_get busl original_index
procedure : :branch_get bus2_original_index
procedure ::branch_compare

for branche. The bus and branch compare functions are used to determine if a bus or branch is
equal to another bus or branch. An example of how to use this function can be found in the
function that evaluates transformer contributions on branches for the powepiidgation.

The syntax for calling this function is

double complex function branch_get_transformer(branch, bus)
class(application_branch), intent(in) :: branch

class(application_bus), intent(in) :: bus
class(application_bus), pointer :: busl, bus2
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if (bus%bus_compare(busl)) then

In this fragment, thbus_compare function is being used to check if busl is equivalent to bus.
Thebranch_compare function is used in a similar way.

Thefinal issue in implementing the Fortran applicatiors and branch classes is understanding

the exchange buffer§hese buffers are declared at the top of the

component_template.F90 file as thebus_xc_data andbranch_xc data data

types. Although the underlying Fortran interface implementation makes exderss of the
iso_c_bhinding module, we have worked very hard to keepisioe c_binding data

types out of the Fortran interface itself. Howevke one place where this is not possible is in

the exchange buffers, so it is important to use these dataagf@ations for any variables that

are included in the exchange buffers. The exchange buffers are declared as follows in the top of
thecomponent_template.F90 file

type, bind(c), public :: bus_xc_data
|
I Example data types. Replace with application - specific values
|
integer(C_INT) int_reg
integer(C_LONG) int_long
real(C_FLOAT) real_s
real(C_DOUBLE) real_d
complex(C_FLOAT_COMPLEX) complex_s
complex(C_DOUBLE_COMPLEX) complex_d
logical(C_BOOL) log_reg
end type

The variablsin t reg ,int_long ,real_s ,real_d ,complex_ s ,complex d and

log_reg are just examples and should be replaced with the variables used in the actual
application. Not all data types will be used in an application. #ffer variables used in an
application shold use theso_c_binding type declarationsq_INT, C_LONGC_FLOAT,
C_FLOAT_COMPLEX_DOUBLE_COMPLE® BOOL. Variables declared with the
iso_c_binding types can be cast to regular Fortran variables by relying on the compiler to
automatically cast an signment to the right sized variabfor example

| nteger f_var
I nteger(C_INT) c_var

f var=c_var
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If f var is an 8 byte integer aral var is a 4 byte integer, the compiler can be relied on to do
the cast. This also works in the opposite dicg; assuming thdt var does not exceed the
capacity of a 4 byte variable.

The functions that access neighboring branches or buses also work differently than the
corresponding C++ functions. Fortran does not support anything that looks like an STLseector
neighbors are accessed from buses using a two step process. The first step is to get the total
number of neighbors attached to the bus usingptise get num_neighbors procedure.

This allows users to set up a loop that cande to run over either tmeighboring branches or

the neighboring buses that are attached to the calling bus via a single btaokighboring
branches can then be accessed by using the bus_get_neighbor_branch function which returns a
Fortran pointer to the neighboring branthe syntax for using this function is

integer i, nbranch
type(application_branch), pointer :: branch
nbranch = bus%bus_get_num_neighbors()
doi=1, nbranch

branch => bus%bus_get_neighbor_branch(i)

Thebus_get_neighbor_bus function woks in a similar wayand returns a pointer to the

bus at the other end of branchTo get pointers to the buses at either end of a branch, use the
functionsbranch_get busl andbranch_get bus2 procedures. Because the Fortran
interface only supports one &f bus or branch per application, these functions return pointers
of the correct type and there is no need to cast them to something else.

Most of the remaining differences between the Fortran and C++ interfacassaciated with
the GridPACKfactory nodule. As with the component classes, the Fortran interface only
supports one kind of factoryhis is theapp_factory  type and it can be created by copying
thefactory_template .F90 file in thefortran/factory directory and making
applicationspecific chages to it. The factory base class contains the functions

procedure ::set_components
procedure :load

procedure ::set_exchange
procedure ::set_mode
procedure ::check_true

These functions behave the same way as the equivalent C++ functiaddition, the
app_factory  type contains the two functions

procedure:.create
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procedure::destroy

Because Fortran does not support constructors and destructors in the same way as C++, it is
necessary to create explicit functions that implement whatsshaviors are imbedded in the

C++ constructors and destructorsis is accomplished in the Fortran interface by adding
create anddestroy functions (onnitialize andfinalize functions) to most of the
Fortranimplementations of the GridPACkKodules.

Additional methods can be added to #pp_factory  type to support applicatiespecific
functionality. An example of how to do this is thbet y bus procedure for the power flow
application. This subroutine is declared as a procedure apihefactory  type. The
implementation is written as

subroutine set_y bus(factory)
class(app_factory), intent(in) :: factory
class(application_bus), pointer :: bus
class(application_branch), pointer :: branch
class(network), pointer :: grid
integer nb  us, nbranch, i
grid => factory%p_network_int
nbus = grid%num_buses()
nbranch = grid%num_branches()
doi=1, nbus
bus => bus_cast(grid%get_bus(i))
call bus%bus_set y matrix()
end do
doi=1, nbranch
branch => bran ch_cast(grid%get_branch(i))
call branch%branch_set_y matrix()
end do
return
end subroutine set_y bus

The functions for accessing the bus and branch objects work differently from the functions that
get neighboring branches or buses in thaponent classes. The neighbor bus and branch
functions return a pointer to the appropriate bus or branch directly to the calling application. The
get_bus andget_branch functions in the Fortran network class return an opaque object that
cannot be directlysed in a Fortran code. To convert timsa bus or branch pointer it is

necessary to call tHeus_cast orbranch_cast functions which returma pointer that can be
called in Fortran.
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The last remaining point is to provide a list of the existing Fortraduies that need to be used
in aGridPACK application using the Fortran interface. These modules need to be included in
any subroutine or function that is using the associatettan types. The existing modules are

gridpack _network ! type or class networ k
application_factory ! type or class app_factory
application_components ! type or class application_bus and
I application_branch
gridpack_configuration ! type or class cursor
gridpack_full_matrix_map ! type or class full_m atrix_map
gridpack _bus_vector_map ! type or class bus_vector_map
gridpack _gen_matrix_map ! type or class gen_matrix_map
gridpack _gen_vector_map ! type or class gen_vector_map
gridpack_math ! access to math initialization and
I' final ization routines
gridpack_matrix ! type or class matrix
gridpack_vector ! type or class vector
gridpack_linear_solver ! type or class linear_solver
gridpack_nonlinear_solver ! type or class funcbuilder
I' and nonlinear_so Iver

gridpack_communicator ! type or class communicator
gridpack_parallel ! access to parallel initialization

I and finalization routines
gridpack_parser ! class or type pti23_parser
gridpack_serial_io ! class or type bus_serial _io

I'and branch_serial_io

The appropriate module should be included in any function or subroutine that uses objects
defined in the modul e. Modul es useOn sbtea tienntelnutd.e
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